Мы его вскоре рассмотрим. Оно играет очень важную роль в физике и технике, и этому основному соотношению подчиняется движение звезд и поведение атомов.
Нам еще предстоит рассмотреть вопрос о силе и ускорении.
В заключение выскажем некоторые сомнения. Откуда вам известен вес тела, когда тело свободно падает? Когда вы сидите на стуле, вы ощущаете поддерживающую силу со стороны стула и вам кажется, что вы чувствуете свой собственный вес. Но выпрыгнув из окна, почувствуете ли вы свой вес? Предположим, вы прыгаете из окна, а в руках держите кусок металла, причем пытаетесь взвесить его в момент падения. Предположим на минуту, что, дабы сделать вашу временную лабораторию более удобной, вас вместе о куском металла и приспособлением для взвешивания заключили в огромный ящик и сбросили этот ящик с большой высоты, предоставив ему свободно падать. Предположим далее, что в ящике нет окон. Что произойдет с куском свинца, когда вы выпустите его из рук, находясь внутри ящика? Будет ли он падать на пол? Поразмыслив, вы придете к выводу, что земное притяжение как бы исчезнет. Скажете ли вы, что тяжесть действительно исчезла или что ваша лаборатория движется вниз с ускорением? Если нельзя сказать, в чем разница, то существует ли вообще разница? Обсуждение этих вопросов привело бы вас к теории относительности.
ПРИЛОЖЕНИЕ I. АЛГЕБРА
В этом приложении мы не собираемся открывать новых законов физики или пересматривать старые, мы намерены лишь произвести своего рода механическую обработку понятий. Начнем с предположения, которое представляется ясным для понимания, а именно с предположения о движении с постоянным ускорением , и заставим алгебру дать нам некоторые логические следствия. Полученные результаты — это просто старые сведения, которым придана новая форма. Они будут полезны при изучении реального мира — при выводе этих результатов мы можем спокойно сидеть в башне из слоновой кости и верить в то, что наши действия — действия совершенной логики — верны с точностью до предположений, на которых они Определение. Выберем в качестве величины, с которой мы будем иметь дело, изменение скорости в единицу времени:
Определение . Выберем в качестве величины, с которой мы будем иметь дело, изменение скорости в единицу времени:
[ИЗМЕНЕНИЕ СКОРОСТИ]/[ВРЕМЯ ИЗМЕНЕНИЯ СКОРОСТИ], ИЛИ Δv / Δt
Поскольку эта величина — понятие, удобное для пользования, мы назовем ее ускорением . Тогда формулировка « ускорение = Δv / Δt » представляет собой лишь словарное определение, объясняющее, чему мы дали это название.
Предположение . Мы предполагаем, что ускорение постоянно. (Иначе говоря, мы исследуем вид движения, при котором величина Δv / Δt постоянна. Существует много других типов движения, общих по своему характеру, но этот тип движения — простой и в то же время очень важный, поэтому мы исследуем его подробно.)
Итак, Δv / Δt — постоянная, величину которой мы обозначим через a .
Пользуясь нашим методом, основанным на элементарной алгебре, мы будем предполагать, что средняя скорость тела, движущегося с постоянным ускорением, в точности равна среднему из скоростей в начале и в конце перемещения. Таким образом, мы предполагаем, что
СРЕДНЯЯ СКОРОСТЬ = (НАЧАЛЬНАЯ СКОРОСТЬ + КОНЕЧНАЯ СКОРОСТЬ)/2
Мы говорим также, что
ПРОЙДЕННЫЙ ПУТЬ = СРЕДНЯЯ СКОРОСТЬ∙ВРЕМЯ,
или
s = v -/ t
Заметим, что мы пользуемся точкой в качестве знака умножения; сейчас так принято, и мы будем прибегать к этому знаку для перемножения таких единиц, скажем, как чел∙час; кроме того, мы поставили сверху черту над буквой v для обозначения « v среднее».
Терминология. Примем следующие обозначения:
1) Ускорение — а м/сек на секунду.
2) Скорость движущегося тела в момент пуска часов (т. е. при t = 0) равна v 0м/сек. Сокращенно записываем это в виде
Начальная скорость = v 0м/сек при t = 0.
3) Скорость движущегося тела по прошествии t сек равна v м/сек, или
Конечная скорость = v м/сек.
4) Путь, пройденный за время t сек, равен s м.
Как уже было сказано, это лишь расшифровка принятых буквенных обозначений. Мы можем дать более связную формулировку: движущееся тело, начав двигаться со скоростью v 0, проходит расстояние s за время t с ускорением а и достигает конечной скорости v .
Читать дальше