Во многих случаях точность измерения величин должна быть не хуже 0,1 %. Такое требование может возникнуть при выборе объяснений того или иного явления. В некоторых случаях для выяснения какого-нибудь существенного вопроса приходится определять измеряемые величины с точностью до одной миллионной или даже одной миллиардной. Например, чтобы надежно предсказать выделяющуюся ядерную энергию, исходя из малых разностей атомных масс, сами массы нужно определить (масс-спектрографическим путем) с колоссальной точностью. Для решения проблем, возникающах на современном этапе изучения строения атома, необходимо определять длины световых волн с точностью до одной миллионной. А измерения гравитационного поля, чтобы можно было использовать их для дальнейшей проверки общей теории относительности, должны выполняться с точностью до одной миллиардной.
Но на ряд важных вопросов можно получить ответ, проделав весьма приближенные измерения. Например, мы вполне можем примириться с 20 %-ной погрешностью при определении химической валентности (которая должна быть малым целым числом), температуры термоядерной реакции или возраста Вселенной.
Добиваться большой точности — не всегда означает поступать разумно. Увеличение точности не самоцель. Следует прилагать большие усилия в этом направлении, если отсюда можно получить важные преимущества. Правда, иногда ученый стремится к повышению точности просто в силу чувства долга или находит удовольствие в том, чтобы сделать прибор как можно лучше.
Повышенная точность прибора сможет быть использована только в будущем. Проводя измерение, ученый приводит его точность согласно своей оценке. Он не ограничивается сообщением о том, что он измерил g и получил значение g = 9,8 м/сек 2, а добавляет; «С ошибкой ±0,1 м/сек 2. Тех, кто желает воспользоваться полученным результатом, ошибка часто интересует в такой же степени, как сам результат. Без указания ошибки ±0,1 результат измерения едва ли можно считать надежной информацией, которой может еще кто-то воспользоваться. Чтобы оценить ошибку, необходим большой навык: нужно принимать во внимание разброс результатов измерений, исключать влияние известных источников ошибок, определить скрытые систематические ошибки; не последнее значение имеет разумный и трезвый подход в целом, который появляется у экспериментатора, досконально знающего свою аппаратуру. (Обратите внимание, насколько у вас самих повышаются навыки экспериментатора после того, как вы поработаете некоторое время с каким-нибудь прибором в лаборатории, как появляется растущее чувство уверенности в результатах ваших измерений.)
Знаки 
Результат измерения, погрешность которого экспериментатор считает равной 0,001, может быть записан тремя способами:
x = 3,1642 ± 0,003,
x = 3,1642 ± 0,1 %,
x = 3,164.
В третьей строчке последняя цифра 4 рассматривается как недостоверная. Ниоткуда не следует, что цифра 4 отличается от верной на ±3. Эта форма записи дает лишь основание считать, что последняя цифра сомнительна — обычно такой записи достаточно, чтобы указать на имеющуюся погрешность. В двух предыдущих строчках появление последней цифры 2 совершенно неоправдано: ошибка показывает, что такая запись результата (с точностью до последней цифры 2) лишена смысла. Экспериментатор, сохраняющий эту цифру, обманывает сам себя.
Если эксперимент дает приближенное значение или приближенный ответ появляется в результате оценки, не следует записывать результат как х = 800, ибо это противоречит точному смыслу знака =. Вместо этого нужно писать
х
(~=) 800.
Такая запись означает их приближенно равно 800». Символ обычно означает «приблизительно равно» (хотя это утверждение не совсем логично).
При более грубой оценке можно написать
у ~ 1000.
Это значит, что у ближе к 1000, чем к 100 или к 10 000. Подобная грубая оценка «порядка величины» часто имеет огромное значение.
Так было с оценкой размера атома столетие назад, так обстоит дело с определением радиуса Вселенной (если он вообще не бесконечен) в наши дни. Во многих случаях достаточно произвести измерение с точностью до порядка величины. Например, когда речь идет о росте температуры, достаточно малом, чтобы им можно было пренебречь, или о весе, заведомо настолько большом, что поверхностное натяжение можно считать несущественным, то же самое можно сказать об определении приближенной даты исторического события, когда излишнее уточнение даты только отвлекает внимание от сущности события.
Читать дальше