Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила

Здесь есть возможность читать онлайн «Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1969, Издательство: Мир, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика для любознательных. Том 1. Материя. Движение. Сила: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика для любознательных. Том 1. Материя. Движение. Сила»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 1. Материя. Движение. Сила — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика для любознательных. Том 1. Материя. Движение. Сила», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Исходя из концепции волн, мы считаем, что источник излучает сферические волны (как на фиг. 278), которые становятся все больше, пока не достигнут линзы. За пределами линзы волны должны сокращаться в размерах по мере того, как сходятся в изображение, собираясь там практически в точку. (Изображение представляет собой область с наибольшей плотностью потока энергии.) Но как же волна под действием линзы превращается из выпуклой в вогнутую? Очевидно, что утолщенная центральная часть линзы должна приводить к задержке проходящей через нее волны так, чтобы выпуклость волны N (которая проходит через центр линзы) задерживалась больше всего и оказывалась за линзой N' . Следовательно, волна должна распространяться в стекле медленнее, чем в воздухе.

Что же касается корпускул, то они, чтобы следовать после линзы по тем же искривленным путям, должны двигаться в стекле быстрее, чем в воздухе.

Фиг 278 Волны света На фиг 279 показана траектория частицы вдоль луча - фото 260

Фиг. 278. Волны света.

На фиг. 279 показана траектория частицы вдоль луча света. Частица, двигаясь вдоль луча CDE , должна притягиваться стеклом в точке D (подобно молекуле пара, возвращающейся в жидкость) и, следовательно, должна двигаться в нем быстрее. Здесь можно произвести «решающий эксперимент» и проверить, какая из двух теорий света — волновая или корпускулярная — правильна; следует сравнить скорости света в воздухе и в стекле (или в какой-нибудь другой плотной среде, такой, как вода).

Фиг 279 Траектория частицы света До 1850 г этого не удавалось проделать - фото 261

Фиг. 279. Траектория частицы света.

До 1850 г. этого не удавалось проделать, но потом измерения показали, что свет распространяется в воде медленнее, чем в воздухе . Еще до получения этого убедительного результата имелись другие наблюдения, которые указывали на существование волн света, — дифракция и интерференция.

Дифракция: огибание волнами препятствий

Понаблюдайте, как волны на поверхности воды проходят между двумя барьерами. Проходя через широкий зазор (в котором укладывается много длин волн), волны продолжают распространяться в прежнем направлении, а по бокам остается спокойная вода, т. е. тень. Если зазор более узкий, угол, в котором волна распространяется после прохождения зазора, стремится расшириться. При очень узком зазоре это расширение становится максимальным: волна распространяется по всем направлениям в передней полуплоскости. (Гюйгенс указывал, что этого следует ожидать. Подойдя к преграде, волны заставляют колебаться воду в узком зазоре, и это порождает круговую рябь. Вода за преградой не «знает», что служит источником волн, не вызывает ли волны, скажем, погруженный в воду палец, которым двигают вверх и вниз в зазоре?.

Значит, мы должны ожидать, что от узкого зазора, ширина которого составляет лишь долю длины волны, волны будут распространяться по всем направлениям.) Это изменение направления волн, в результате которого волна распространяется в широком диапазоне направлений, или огибание волнами препятствий, называется дифракцией .

Если свет представляет собой волны, то почему солнечный свет проходит через булавочный прокол в виде резко очерченного пучка и не рассеивается? Потому что обычный булавочный прокол — это широкое отверстие; ширина его, как мы теперь знаем, составляет тысячи λ ! Если свет находит в преграде очень маленькое отверстие, он рассеивается. Проделайте такой эксперимент. Посмотрите сквозь булавочный прокол в картонке или щель между указательным и большим пальцами на находящийся где-то вдали зажженный уличный фонарь. Вы увидите резко очерченные контуры фонаря без заметного рассеяния, т. е. без дифракции. Попробуйте посмотреть на фонарь через булавочный прокол меньшего размера. Если взять очень маленькое отверстие, то сквозь него не только будет проходить меньше света, но свет от уличного освещения будет казаться вам размытым: начнет проявляться дифракция. Можно воспользоваться сеткой с очень маленькими отверстиями: куском легкой ткани вроде зонтичной или шелковым носовым платком. Теперь уличный фонарь представится вам в виде узора из ярких пятен. Измерения в этом случае могут помочь оценить значение λ . Волны могут (и должны) создавать такую картину, когда отверстия отстоят одно от другого на несколько λ , частицы же создавать ее не могут. Попробуйте просеять песок (изображая таким образом поток частиц) через мелкое проволочное сито. На столе образуется горка, а не другая какая-нибудь конфигурация из отдельных холмиков.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика для любознательных. Том 1. Материя. Движение. Сила»

Представляем Вашему вниманию похожие книги на «Физика для любознательных. Том 1. Материя. Движение. Сила» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика для любознательных. Том 1. Материя. Движение. Сила»

Обсуждение, отзывы о книге «Физика для любознательных. Том 1. Материя. Движение. Сила» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x