Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила

Здесь есть возможность читать онлайн «Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1969, Издательство: Мир, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика для любознательных. Том 1. Материя. Движение. Сила: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика для любознательных. Том 1. Материя. Движение. Сила»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 1. Материя. Движение. Сила — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика для любознательных. Том 1. Материя. Движение. Сила», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Фиг 284 Дифракционная решетка а к центральной светлой полосе б к - фото 266

Фиг. 284. Дифракционная решетка.

а— к центральной светлой полосе; б— к спектру «первого порядка»; в— к спектру «второго порядка»

Если направить на дифракционную решетку желтый свет от окрашенного солью пламени, то мы увидим центральную желтую «линию» (изображение источника — щели, находящейся перед пламенем) и такие же резко очерченные желтые линии в первом порядке, во втором порядке и т. д. Представленная на фиг. 285 схема дает для спектра первого порядка соотношение

длина волны = d∙sin А ,

где А — угол между центральной линией и линией первого порядка, a d — расстояние между штрихами решетки, известное из данных делительной машины. Таким образом, имея в своем распоряжении хорошую дифракционную решетку, можно точно измерить длины световых волн. (Вы сами можете проделать такое приближенное измерение, используя долгоиграющую пластинку в качестве отражательной решетки. Чтобы измерить d для этой решетки, поставьте пластинку на проигрыватель и сосчитайте число оборотов.)

Освещение дифракционной решетки белым светом дает широкий спектр в нервом порядке, еще более широкий во втором порядке и т. д.

Фиг. 285. Схема распространения волн, прошедших через дифракционную решетку.

Лучи красного света отклоняются сильнее всего (поэтому длина волны красного света самая большая), затем следуют оранжевые, желтые, зеленые, синие, фиолетовые лучи. Измерения углов дают примерно следующие значения длин волн:

За пределами видимого спектра За пределами видимого света находится область - фото 267

За пределами видимого спектра

За пределами видимого света находится область инфракрасного излучения с большей длиной волны, которую можно легко измерить с помощью грубых дифракционных решеток. За инфракрасными лучами спектр продолжают радиоволны — от самых коротких волн так называемого сверхвысокочастотного (СВЧ) диапазона до обычных радиоволн, у которых λ измеряется сотнями метров. По другую сторону области видимого света располагаются ультрафиолетовые лучи с более короткими длинами волн, чем у видимого света (фиг. 286); длину волны ультрафиолетовых лучей измеряют с. помощью тонких дифракционных решеток, которые приходится помещать в вакуум, чтобы избежать поглощения этих лучей в воздухе.

Фиг 286 Спектр электромагнитных волн а некоторые источники - фото 268

Фиг. 286. Спектр электромагнитных волн.

а— некоторые источники электромагнитных волн; б— спектр электромагнитных волн.

Спектры рентгеновских лучей

Если длины волн видимого света измеряются многими тысячами ангстрем ( А °), то рентгеновские лучи обладают значительно более короткой длиной волны, близкой к 1 А °.

Едва ли мыслимо нарезать столь тонкую решетку, у которой штрихи были бы расположены на расстоянии, скажем, 10 А ° один от другого, чтобы наблюдать дифракцию рентгеновских лучей. (Правда, при наклонном расположении обычных решеток рентгеновские лучи «видят» уменьшенное расстояние между штрихами.) Мы же используем слои атомов в кристаллах. Электроны атомов в каждом слое рассеивают рентгеновские лучи в виде слабой «отраженной волны». Волны одной длины, отраженные от ряда слоев атомов под определенным углом, складываются в заметный по интенсивности пучок, совсем как при образовании обычного спектра складываются волны, идущие от штрихов решетки. Таким образом, имея кристалл известной структуры, можно измерить длину волны рентгеновских лучей (фиг. 287), а значит, использовать рентгеновские лучи для исследования расположения атомов в кристаллах. Оказалось, что все твердые тела имеют кристаллическое строение и даже у жидкостей расположению молекул присуща известная локальная упорядоченность.

Фиг. 287. Дифракция рентгеновских лучей в кристалле.

Рентгеновские лучи («свет» очень короткой длины волны) отражаются слоями атомов, и волны, отраженные от большого числа слоев, складываясь, дают в некоторых направлениях волну большой интенсивности.

Линейчатые спектры

Направленный на дифракционную решетку свет, испускаемый сильно нагретым газом, скажем парами натрия при внесении в пламя соли или неоном в газосветных лампах рекламного освещения, содержит всего несколько цветов. Его спектр состоит из разделенных темными промежутками полос, настолько узких, что каждый цвет образует тонкую «линию». Натрий дает желтую линию — фактически две расположенные близко друг к другу линии. Неон дает много линий. Водород, если заставить его светиться, испускает серию линий — красную, зелено-синюю, синюю, фиолетовую, причем промежутки между линиями подчиняются простому закону. Ртуть дает две желтые линии (фиг. 288), очень яркую зеленую линию, фиолетовую и другие линии, но не испускает красного света — отсюда странный цвет ртутных ламп уличного освещения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика для любознательных. Том 1. Материя. Движение. Сила»

Представляем Вашему вниманию похожие книги на «Физика для любознательных. Том 1. Материя. Движение. Сила» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика для любознательных. Том 1. Материя. Движение. Сила»

Обсуждение, отзывы о книге «Физика для любознательных. Том 1. Материя. Движение. Сила» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x