Ланцелот Хегбен указывает: «Читателям детективной литературы известны два типа сыщиков. Одни придерживаются метода Фрэнсиса Бэкона, собирая на картотеку по крупицам всю относящуюся к делу информацию. Другие, подобно Ньютону, следуют какой-то идее и, как Ньютон, тотчас отбрасывают ее, если она приходит в противоречие с наблюдаемыми фактами. Единство науки — в природе результата исследований, в единстве теории и практики. Каждый вид поиска по-своему полезен, и лучший сыщик тот, кто сочетает оба метода, руководствуясь своей идеей для проверки гипотез, причем готов к появлению новых фактов» [17] Science for the Citizen, London, 1938.
.
Один из ведущих американских физиков П. Бриджмэн следующим образом выразил общую точку зрения: «Я бы сказал, что не существует научного метода как такового, и самая существенная особенность методики научной работы состоит просто в том, что ученый должен действовать во всю силу своего ума, не гнушаясь ничем, за что можно было бы ухватитьс я».
Изучение ускоренного движения индуктивным и дедуктивным методами
Первоначальное развитие науки было обязано главным образом индуктивному методу познания; в нашем рассмотрении свободного падения тел мы пользовались методом индукции и на основании многих наблюдений установили общее положение, согласно которому все тела, свободно падающие в вакууме, движутся одинаково. Изучая детали этого движения свободного падения, Галилей, по-видимому, использовал одновременно оба метода. Он выдвигал плодотворные гипотезы и умело использовал геометрию и логические рассуждения.
Мы воспользуемся теперь вторым методом, т. е. дедукцией. Начнем с принятия некоторого правдоподобного правила, а затем сопоставим выводы из принятого правила с действительным свободным падением тел.
Выберем приведенное выше предположение 3 (стр. 37), т. е. примем, что скорость свободно падающего тела возрастает равномерно на одну и ту же величину за равные отрезки времени . Можно дать более удобную формулировку этого предположения, сказав, что оно предусматривает движение «с постоянным ускорением», но для этого необходимо придать слову ускорение вполне определенный смысл. Назовем ускорением величину
[ПРИРАЩЕНИЕ СКОРОСТИ]/[ЗАТРАЧЕННОЕ ВРЕМЯ], или ИЗМЕНЕНИЕ СКОРОСТИ В ЕДИНИЦУ ВРЕМЕНИ
Давая это определение ускорению, мы на самом деле выбираем величину (приращение скорости)/(затраченное время) , удобную для пользования, а затем как-то называем ее. Мы вовсе не раскрываем истинного смысла, заключенного в слове «ускорение»! Мы делаем выбор и приписываем выбранной величине наименование, потому что она оказывается удобной для описания рассматриваемого явления природы.
Поскольку мы часто будем иметь дело с изменяющимися величинами , нам необходим краткий способ записи величин «изменение…» или «приращение…». Выберем для этого символ Δ — греческую букву дельта. Первоначально этот символ употреблялся вместо буквы d в слове «difference» (разность). Тогда наше определение [18] В математическом анализе скорость v в данный момент определяется как первая производная пути по времени v = ds / dt , а ускорение а в данный момент — как первая производная скорости по времени, т, е. равно dv / dt , или d 2 s / dt 2 (вторая производная пути по времени).
ускорения будет выглядеть следующим образом:
УСКОРЕНИЕ = [ПРИРАЩЕНИЕ СКОРОСТИ]/[ЗАТРАЧЕННОЕ ВРЕМЯ] = [ИЗМЕНЕНИЕ СКОРОСТИ]/[ИЗМЕНЕНИЕ ПОКАЗАНИЙ ЧАСОВ],
a= Δ v/Δ t,
где а — ускорение, v — скорость, t — время.
Дедуктивный анализ движения с постоянным ускорением
Теперь выразим наше предположение о свободном падении тел при помощи этой новой терминологии. Предположим, что для тел, совершающих свободное падение (в вакууме),
Δv/ Δt постоянно
Эта запись формулирует чрезвычайно смелое предположение о реальной природе. Справедливо ли оно? Постоянна ли величина Δv / Δt. Чтобы непосредственно проверить это, нам пришлось бы воспользоваться специальным прибором, чтобы измерить ускорение тела ( Δv / Δt ) на каждом этапе его падения. Такие приборы существуют, но они сложны, и нам не удалось бы получить с их помощью необходимого убедительного доказательства справедливости предположений. Поэтому мы последуем примеру Галилея и прибегнем к помощи логической машины — математики, чтобы получить вывод, который затем можно будет проверить на опыте.
Читать дальше