Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила

Здесь есть возможность читать онлайн «Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1969, Издательство: Мир, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика для любознательных. Том 1. Материя. Движение. Сила: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика для любознательных. Том 1. Материя. Движение. Сила»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 1. Материя. Движение. Сила — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика для любознательных. Том 1. Материя. Движение. Сила», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В точке С , где течение быстрее, давление меньше.

В области D , где поток воздуха выходит наружу, давление равно атмосферному. В узком зазоре С скорость потока выше, потому что то же количество воздуха должно пройти через более узкое пространство. Какое будет здесь давление — больше или меньше?

Теперь вам понятно, что удерживает шарик?

Принцип Бернулли и его объяснение

Принцип «где быстрее течение, там меньше давление» справедлив для ламинарного течения газа или жидкости. Он специфичен, но не столь непонятен, как это кажется. На самом деле его можно предсказать на основании известного уже вам второго закона Ньютона с помощью следующего рассуждения.

Выделим небольшой цилиндрический элемент жидкости, движущийся вдоль линий тока в области А (фиг. 240).

Фиг 240 Линии тока жидкости текущей по трубе В области В этот элемент - фото 223

Фиг. 240. Линии тока жидкости, текущей по трубе.

В области В этот элемент движется быстрее, и, следовательно, его количество движения возрастает. Движение ускоряется где-то между A и С , очевидно, в сужающейся шейке В . Но ускорение требует наличия силы, а в движущейся жидкости эта сила может быть создана только давлением окружающей жидкости. Это заставляет предположить, что давление в А должно быть выше, чем в В . Если бы во всех областях А, В и С давление было одинаковым, откуда могла бы в жидкости возникать ускоряющая сила? Элемент жидкости ничего не «знает» о внешнем мире и о существующих в нем силах, кроме давления окружающей жидкости. Итак, парадоксальный эффект Бернулли превращается в иллюстрацию второго закона Ньютона: для создания ускорения должна существовать разность давлений.

Чтобы представить себе это более ясно, вообразите крошечную подводную лодку в форме куба; увлекаемая жидкостью, она плывет в ламинарном потоке. Где течение быстрее, там лодка движется быстрее; ее движение, как и движение жидкости, должно ускоряться при переходе из широкой трубки А в более узкую С и замедляться при переходе из С в D (фиг. 241).

Фиг 241 Объяснение принципа Бернулли Ускорение должно быть вызвано - фото 224

Фиг. 241. Объяснение принципа Бернулли.

Ускорение должно быть вызвано разностью давлений. Давление на боковые стенки лодки не влияет на ее движение вперед, поэтому его можно не учитывать. Но давление на переднюю и заднюю стенки должно создавать равнодействующую при ускорении или замедлении движения. Поэтому, когда лодка ускоряется в В при переходе из А в С , сила, подталкивающая ее в корму, должна быть больше силы, оказывающей сопротивление носу. Давление на корму должно быть больше давления на нос. Корма лодки находится в области медленного течения А , а нос — в области быстрого течения С . Давление должно быть меньше там, где течение быстрее. Когда лодка переходит из С в D , давление на корму оказывается меньше давления на нос и движение замедлится.

Это несколько туманное рассуждение справедливо в рамках обсуждаемого вопроса — разность давлений вызывает ускоренное движение жидкости. Чтобы развить его дальше, следовало бы подробно обсудить вопрос об энергии. Пока мы будем применять принцип Бернулли в приведенной выше расплывчатой формулировке — при ламинарном течении давление меньше там, где быстрее течение . Он неприменим к вихревому или турбулентному течению. Даже при ламинарном течении этот принцип неприменим при перемещении от одной линии тока к другой, потому что ни один элемент не может двигаться поперек линий тока; однако, поскольку поперечных течений нет, большой разности давлений, вообще говоря, не возникает при переходе от одной линии тока к соседней.

Принцип Бернулли важен, но он не является тем фундаментальным законом физики, который всем необходимо знать. Он приведен здесь как пример необычного поведения, которое может быть «объяснено» на основе общих знаний без особых законов, придуманных специально для этой цели [145].

Примеры эффекта Бернулли

На фиг. 242, а струя воздуха обдувает открытый конец трубки, погруженной в жидкость. Воздух в области А движется быстрее, чем в области В , где он смешивается с атмосферным воздухом. Поэтому давление в А ниже атмосферного, и атмосферное давление в D может поднять жидкость по трубке, где она распыляется. На Фиг. 242, б показаны два шарика для пинг-понга, подвешенные на гибких проволочках недалеко один от другого. Струя воздуха между ними заставляет их сблизиться. На фиг. 242, в воздух по трубке АВ подается в отверстие в центре закрепленного диска С .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика для любознательных. Том 1. Материя. Движение. Сила»

Представляем Вашему вниманию похожие книги на «Физика для любознательных. Том 1. Материя. Движение. Сила» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика для любознательных. Том 1. Материя. Движение. Сила»

Обсуждение, отзывы о книге «Физика для любознательных. Том 1. Материя. Движение. Сила» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x