Мы уже знаем, что каждый угол куба образуется пересечением трех его граней. Возьмите три квадратных куска картона, положите их на стол, затем попробуйте приподнять их, ухватившись за то место, где встречаются все три угла квадратов.
Квадратные куски картона образуют при этом трехгранный угол куба. Поэтому мы можем сделать правильный многогранник, каждый угол которого будет образован пересечением трех квадратных граней. (Нам понадобится еще три квадратных куска картона, чтобы сделать весь куб). Можем ли мы сделать иной правильный многогранник с одной или двумя, или четырьмя квадратными гранями, пересекающимися между собой?
Из одного квадрата мы не можем образовать многогранный угол.
С двумя квадратами мы получим лишь плоский двугранный угол.
С тремя квадратами мы получим трехгранный угол куба.
С четырьмя квадратами нельзя получить угол многогранника; их углы, смыкаясь, образуют плоскость.
Таким образом, с помощью квадратов можно построить лишь один правильный многогранник — куб.
Опыт 2.Попробуйте теперь образовать многогранник с помощью правильных пятиугольников . Сколько правильных многогранников можно получить, пользуясь гранями такой формы?
Попробуйте выполнить аналогичную задачу с шестиугольниками и другими многоугольниками. Попробуйте построить правильные многогранники с помощью треугольников.
Вывод.Только пять различных многогранников могут существовать в нашем трехмерном мире (фиг. 77, б ). (Обращаем ваше внимание на то, что для доказательств, которыми мы здесь пользовались, необходимы не только эскизы, сделанные карандашом, но и модели из картона.)
Фиг. 77. Многогранники.
б— правильные.
Казалось, что найдено чудесное объяснение того, почему существует только шесть планет. Строя систему планет, Кеплер начал со сферы для земной орбиты, построил вокруг нее додекаэдр так, чтобы его грани соприкасались со сферой, затем описал вокруг этого додекаэдра другую сферу так, чтобы она проходила через его вершины; на этой сфере должна была лежать орбита Марса; вокруг этой сферы он построил тетраэдр, затем сферу для Юпитера, затем куб, затем сферу для Сатурна. Внутри земной сферы он поместил еще два многогранника, разделенные сферами, чтобы получить таким образом орбиты Венеры и Меркурия. Относительные радиусы сфер, вычисленные на основе геометрии, находились в соответствии с известными в то время относительными радиусами орбит планет, и Кеплер был в восторге: « Огромную радость, которую я испытал от этого открытия, нельзя выразить словами. Я уже не жалел о потраченном времени и не испытывал усталости; я не боялся трудных расчетов, не считал проведенных за вычислениями дней и бессонных ночей, стремясь выяснить, соответствует ли моя гипотеза теории орбит Коперника, или же моя радость должна рассеяться как дым ».
Фиг. 78. Схема Кеплерас правильными многогранниками (заимствовано из его книги).
Относительные размеры орбит планет показаны шаровыми оболочками, отделяющими один многогранник от другого. Толщина этих шаровых оболочек подобрана таким образом, чтобы учитывался эксцентриситет орбит
Теперь мы знаем, что это был лишь случайный успех. В более поздние годы Кеплеру самому пришлось подгонять соотношения радиусов своих сфер, чтобы они соответствовали фактам, а когда спустя несколько столетий были открыты другие планеты, схема Кеплера оказалась совершенно несостоятельной [44] И сейчас имеется грубое эмпирическое правило, связывающее радиусы орбит друг с другом, так называемый закон Боде; но до недавних пор этому правилу не могли найти объяснения.
. И все же этот «успех» привел Кеплера к дальнейшим великим открытиям.
Кеплер опубликовал свое открытие в книге, где привел также описание всех своих неудачных попыток. Столь необычный характер изложения присущ многим его сочинениям. Он рассказывал о том, как совершались его открытия. Он не боялся нанести вред своей репутации и лишь желал способствовать росту человеческих знаний, поэтому не скрывал своих ошибок, а подробно их описывал. «Ибо я считаю, — писал он, — что те пути, с помощью которых люди приобрели знания о небесных явлениях, не менее достойны восхищения, нежели сами открытия… Христофору Колумбу, Магеллану, португальцам не просто прощают их подробные описания странствий, было бы очень обидно, если бы этих описаний не было, и мы не могли бы наслаждаться, читая их; пусть и меня не порицают за то, что я поступаю точно так же».
Читать дальше