Это рассуждение несколько наивно. Стекло ведь тоже расширяется. Действует ли расширение стекла на высоту столбика ртути? Что по этой причине, кроме простого расширения ртути, показывает термометр? Допустим, что два термометра содержат чистую ртуть, но шарики их сделаны из различных сортов стекла с разным расширением. Повлияет ли это на результат?
Нелепость описанного способа измерения расширения ртути можно проиллюстрировать анекдотом об Абракадабре. Капитан одного корабля обнаружил, что его навигационный хронометр остановился. Тогда это была беда, ибо не существовало еще радиосигналов времени. Чтобы поставить свой хронометр точно по местному времени, пришлось зайти в порт Абракадабра. Капитан хотел узнать точное время, но в порту ему сказали: «Спросите у часовщика, что на окраине города. У него очень точные часы, он страшно гордится ими». Капитан понес свой хронометр к часовщику, который заверил его: «Можете вполне положиться на мои часы. Они ходят удивительно точно». Капитан поставил свой хронометр по часам мастера и для гарантии спросил: «А почему вы знаете, что ваши часы так точны?». «Я проверяю их по полуденному выстрелу пушки в таможне, и они идут секунда в секунду. Если же они врут, я подвожу их». Капитан был вполне удовлетворен.
Он отправился со своим хронометром на корабль и собирался уж было отчаливать, но разговорился с таможенником и, чтобы еще раз увериться, спросил его о пушке.
— У вас, говорят, есть пушка, которая стреляет в полдень?
— Да, сэр, есть.
— А выстрел дается около полудня или точно в полдень?
— Точно в полдень, сэр.
— Точно?
— Да, сэр, без сомнения.
— А откуда вы знаете, когда наступает точно полдень?
— О, сэр, будьте уверены, у нас на окраине города живет часовщик. У него очень точные часы и…
Эта притча должна предостеречь вас от чего-то еще худшего, нежели порочный круг, — от порочной спирали. Вы можете счесть, что это предупреждение излишне, но с подобными заблуждениями вы столкнетесь не раз и даже В учебных курсах.
Рассуждения такого рода в нашей книге будут называться «абракадабрами». Да послужит это слово предупреждением. Если вам попадутся такие рассуждения, а их можно встретить почти в любом курсе, то вы имеете право процедить обидное «Абракадабра».
Многие утверждают, что операционный подход душит полет фантазии. Считают, что этот подход сделал бы науку очень правильной, но очень однообразной и затруднил бы прогресс. Макс Борн в своей небольшой книге «Физический эксперимент и физическая теория» говорит: «Название "операционный метод определения" получил… общепринятый среди физиков подход. Он состоит в требовании, чтобы физические величины определялись не путем полного сведения к знакомым понятиям, а набором процедур, необходимых для получения и измерения этой величины. Это здравый подход — своего рода защита от пустословия и словесного фетишизма. Он очень полезен в классической физике, где имеют дело с непосредственно измеряемыми величинами…, однако операционное определение неуместно, если распространить представление о поле на атомные ядра и электроны. В квантовой теории он терпит неудачу».
Например, в химии измерение объема газов — одно из наиболее простых, но важных измерений. Газ — податливая штука. Объем газа, образовавшегося в эксперименте, зависит не только от масс компонент реакции, но и от его давления и температуры. Чтобы вычислить массу газа (воспользовавшись стандартной плотностью) или чтобы сравнить объемы газов, полученных в разных экспериментах, следует сначала Охладить газ (мысленно) до стандартной температуры 0 °C и найти объем, который он занял бы при этом, а затем по закону Бойля привести объем к стандартному давлению.
В большинстве учебников приводится закон Гей-Люссака, который утверждает, что все газы расширяются одинаково и равномерно, а объем их пропорционален абсолютной температуре. Он собирает воедино все экспериментальные факты, которыми мы уже пользовались, а именно все газы приводят к одному и тому же абсолютному нулю —273 °C, если на графике зависимости объема газа от температуры продолжить прямую, проходящую через точки кипения воды и таяния льда до пересечения с осью температуры. Другими словами, при изменении температуры от одной данной точки до другой объем всех газов изменяется в одно и то же число раз. Но закон Гей-Люссака говорит еще, что расширение равномерно. Из наших рассуждений следует, что это имеет двоякий смысл:
Читать дальше