Интересные температуры
На фиг. 79 на столбце А отмечены некоторые интересные температуры в градусах Кельвина. Очень низкие температуры здесь как бы сгрудились около абсолютного нуля. Такого сгущения и обрыва температур у 0° К удается избежать применением логарифмической шкалы (столбец Б ).
Для большинства людей абсолютный нуль, когда они впервые сталкиваются с ним, кажется странным ограничением, а некоторых он просто раздражает. Шкала Кельвина дает тот же абсолютный нуль, что и газовая, но термодинамические рассуждения показывают, что мы вряд ли сможем надеяться достичь его. Температур ниже абсолютного нуля либо не существует совсем, либо они не имеют обычного смысла [195]. Это ограничение кажется парадоксальным, но парадокс исчезает, когда мы пытаемся экспериментально достичь очень низких температур. Чтобы охладить материал от 100 до 10° К (т. е. примерно от температуры жидкого воздуха до температуры жидкого водорода), требуется много труда и денег. Столько же требуется и для охлаждения его еще ниже, от 10 до 1° К, столько же для охлаждения от 1 до 0,1° К и от 0,1 до 0,01° К, так что с точки зрения растущей стоимости абсолютный нуль кажется практически недостижимым.
В этой истории стоимости мы учли и усовершенствования, которые могут уменьшить трудности. Но почему бы вместо чисел 100, 10, 1, 0.1… не использовать какие-то другие, более показательные в смысле равномерности трудностей? Можно, взяв логарифм, одинаковые множители 1/ 10превратить в одинаковые шаги , т. е. брать lg 100, lg 10, lg 1, lg 0,1 и т. д., которые равны 2, 1, 0, —1 и т. д., когда в старой шкале температура все меньшими и меньшими шагами подползает к нулю, а логарифм все дальше и дальше бесстрашно опускается вниз: 2, 1, 0, —1, —2, —3 и т. д. до минус бесконечности. Старый «абсолютный нуль» будет теперь «минус бесконечностью» и кажется совсем недостижимым. Именно эта логарифмическая шкала, в которой так удобно размещаются очень низкие температуры, изображена на столбце Б фиг. 79.
Но вправе ли мы использовать логарифм в качестве указателя туры? А на каком основании мы на нашем исходном графике температур пи просто давление? Мы же могли взять и ( давление ) 2и √( давления ) или, как сейчас, lg ( давления ). Сделано это было исключительно из соображений простоты и удобства. Мы и сейчас продолжаем основываться на давлении . Логарифмическая шкала не используется нами, а нарисована здесь просто чтобы помочь вам в ваших размышлениях над температурой.
Фиг. 79. Шкала температур.
А— абсолютная (Кельвина), Б— логарифмическая.
Температура — искусственное понятие
Вернемся теперь к нашим рассуждениям о температуре. Начав с грубой идеи и ощущений, мы пришли к определенному понятию температуры, предписав способ ее измерения. На первый взгляд все это выглядит так, как будто бы и шкала, и все прочее — не прочная наука, а лишь плод нашего воображения. Между тем это не так. Мы можем изготовлять настоящие термометры и с пониманием и пользой применять их. Мы можем создавать теоретические системы и получать хорошие предсказания на языке определенной шкалы. И все же сама температура или ее выбор остается концепцией нашего ума с возможностью любого выбора температурной шкалы. Далеко не все физические величины, которые мы измеряем и которыми пользуемся в науке, выглядят столь искусственно. Некоторые кажутся очевидными, давно известными. Способы их измерения подсказывает наш здравый смысл. Возьмем, например, длину . Имеется ясное представление о длине и нет нужды в ее научном определении. Единицы измерения, конечно, произвольны, и это иногда приводит к путанице из-за плохого определения: единиц длины, но как только единицы установлены, процесс измерения длины кажется очевидным. Таких величин, которые сама Природа обеспечила системой измерения (наподобие длины), довольно много: площадь, число пальцев, возможно, плотность , по-видимому, вес . Но некоторые критикуют эту точку зрения, заявляя, что все измерения заключают в себе неявные предположения и определения. По их мнению, все понятия, лежащие в основе измерения:, должны быть, подобно температуре, плодом нашего собственного изобретения.
С термометром на ракете
На прощание несколько слов об одном практическом вопросе. Межконтинентальные путешествия будут происходить на ракетах. Ракетные корабли с большой скоростью будут двигаться в атмосфере Земли, причем бóльшая часть пути будет приходиться на разреженную атмосферу и снижаться корабли будут в точке назначения. Какова же будет температура внутри корабля во время полета ! Она будет зависеть от внешних условий и системы кондиционирования воздуха. Какова будет температура снаружи? На промелькнувшем в иллюминаторе термометре, подвешенном на воздушном шаре, будет очень низкая температура (особенно если термометр защищен от солнечного света), вероятно, что-то вроде —50 °C. На прикрепленном снаружи термометре, движущемся вместе с кораблем., температура будет около 10 000 °C. Почему?
Читать дальше