Но коль скоро нет «единственной» жидкости, то, может быть, нет и истинной температуры? На первый взгляд это обескураживает, но приводит к полезным выводам. Первый — практический, мы вправе остановиться на ртутном термометре. Он удобен в использованиях, его легко изготовить и измеряет он температуру в определенной шкале. С теоретической точки зрения мы выяснили, что температура, будучи нашим собственным изобретением, связана с прибором для ее измерения. Вновь и вновь мы приходим к тому, что понятия должны подразумевать способ их определения — к так называемому «операционному определению»; следует избегать романтичного представления о том, что в основе лежит некое свойство природы, которое просто выявляется при таком подходе. Сравните это с различием между пространными рассуждениями философов о Правосудии, верой простых людей в единственность Правосудия и практическим подходом юристов к определению Правосудия посредством законов и их соблюдения. Вам может казаться, что некоторые измерения в науке связаны с сущностью предметов и не нуждаются в операционном определении, но будьте осторожны. Возьмите, например, площадь. Мы хорошо знаем, что такое площадь. Но несмотря на это, когда мы пытаемся определить площадь, например 6 м 2, мы ловим себя на том, что начинаем рисовать сетку и считать квадратики или же, если вас предупредили, что это означает признание операционного определения понятий, вы начинаете говорить о том, сколько краски потребовалось бы для покрытия площади, но это также операционный подход, ибо кисть тоже инструмент.
До сих пор нам очень хотелось найти истинную температуру или более общую, более изначальную, чем температура, основанная на произвольном выборе ртути. Нечто похожее дает нам газовый термометр.
Газовый термометр измеряет температуру по расширению образца воздуха иди другого газа или же по увеличению давления в фиксированном объеме (закон Бойля гарантирует нам их эквивалентность). Чтобы уменьшить трудности, связанные с расширением стекла, в качестве стандарта используют газовый термометр, ибо расширение газа в 20 раз больше, чем ртути, и тем самым влияние стекла сводится к минимуму. Кроме того, газовый термометр удобен и с методической стороны, так как все газы ведут себя практически одинаково. Показания термометров с различными газами практически идеально согласуются. Отказавшись от ртути в пользу газов, мы чувствуем, что приблизились к истинной температуре, если вы еще сохранили веру в не [189]>.
Газовый термометр
На фиг. 75, а изображен термометр, который измеряет расширение газа. Капля ртути запирает в капилляре с запаянным концом объем сухого воздуха. При измерении необходимо погружать в среду весь термометр. Перемещение капли ртути в капилляре показывает изменение объема газа; на капилляре нанесена шкала с отметками 0 и 100 для точек таяния льда и кипения воды, как и у ртутного термометра.
Такой термометр не годится для очень точных измерений Мы хотим рассказать о газовом термометре, чтобы пояснить общую идею. Термометр такого типа показан на фиг. 75, б . Ртутный барометр АВ измеряет давление постоянного объема газа в баллоне С . Но вместо того чтобы отмечать высоту столба ртути в барометре в единицах давлении, мы наносим на нем отметку 0, когда баллон помещен в тающий лед, и 100, когда в кипящую воду, я строим по ним всю шкалу Цельсия. Пользуясь законом Бойля, можно показать, что шкала у термометра, показанного на фиг. 75, б , должна быть такой же, как и у термометра на фиг. 75, а .
Фиг. 75. Газовый термометр.
а— в качестве меры температуры используется объем образца, газа при атмосферном давлении, ртутная капля работает как поршень с ничтожным трением, удерживающий газ в узкой трубке, расстояние до закрытого конца служит мерой объема, а следовательно, и температуры; б— в качестве меры температуры используется давление газа (гелия), занимающего постоянный объем.
Применение газового термометра
При градуировке газового термометра, показанного на фиг. 76, мы погружаем баллон в тающий лед и наносим на шкалу барометра отметку 0. Затем повторяем всю процедуру, заменив лед кипящей водой; получаем отметку 100. Пользуясь определенной таким образом шкалой, строим график зависимости давления от температуры. (Если угодно, давление можно выражать в единицах высоты столба ртути.) Затем через точки 0 и 100 проводим прямую линию и, если необходимо, продолжаем ее. Это будет прямая, определяющая температуру в газовой шкале и дающая стандартные значения 0 и 100 в точках таяния льда и кипения воды. Теперь газовый термометр позволит нам измерить температуру, если мы знаем давление газа в баллоне при этой температуре. Пунктирная линия на фиг. 76 показывает, как найти температуру воды, при которой давление газа составляет 0,6 м ртутного столба.
Читать дальше