Специалисты возлагают большие надежды на координационные соединения, в которых электроны с заполненной внешней оболочкой инертного газа захватываются на пустые места в незаполненной оболочке активного атома. При обычных температурах такие связи очень слабы. Поэтому они легко разрушаются при колебании молекул или же при столкновениях, которые вызваны тепловыми движениями. Но при температурах –150 °C ситуация кардинально меняется. Движения настолько замедленны, что даже малые силы способны удерживать атомы.
Для биологического растворителя F 2O подходят молекулы трехфтористого аргон-бора. В нем аргон действует как связывающее звено между группами BF 2. Типичное соединение имеет формулу A»–4BF 3. Связь осуществляется и с помощью следующего механизма. Атом инертного газа в присутствии сильного диполя сильно поляризуется. Поэтому он сам начинает действовать как диполь. Ясно, что при этом он действует на первоначальный диполь. Происходит следующее: электроны смещены на одну сторону, а на другой стороне образуется местный избыток положительного заряда. Этот избыточный положительный заряд может притянуть электрон из другого атома. Эта связь является слабой, но для осуществления жизненных функций она и должна быть слабой. При сильной связи молекулы не могут быть лабильными. Таким образом, и в этом плане F2O заслуживает особого внимания. Молекула F2O является сильным диполем. Поэтому она может принимать участие в реакциях такого типа с инертными газами. При этом должны образовываться молекулярные соединения. Ничего в этом неожиданного нет. Хорошо известно, что инертные газы образуют такие соединения с водой, аммиаком и фенолами. В такого рода соединения могут входить HF и HCN, которые являются сильными диполями. Некоторые из этих соединений при низких температурах будут стабильными в той мере, в какой это необходимо для жизни.
Итог этого рассмотрения можно подвести так. В океане жидких F2O и HeНF могут образовываться сложные псевдоорганические вещества, близкие к тем, которые зажгли (а точнее, проявили) жизнь на Земле. При очень низких температурах расход энергии небольшой.
Рассмотрим подробнее аммиачную жизнь. Аммиак остается жидким в диапазоне температур от –77,7 °C до –33,4 °C. Этот диапазон эже, чем в случае земной жизни. И, конечно, весь он в минусе. Некоторую корректировку проведет давление. Если оно отличается от земного, то поплывут и температуры. При очень большом давлении (как на Юпитере) сильно поднимется точка кипения аммиака. Она может достигнуть +132,4 °C. Это выше точки кипения воды в условиях Земли. И это критическая температура, выше которой переход в жидкое состояние при помощи одного только давления становится невозможным. Но давление это немалое — 112 атмосфер.
Скрытая теплота перехода у аммиака сравнима с таковой у воды. Для парообразования у аммиака скрытая теплота равна 332 кал/г. У воды она равна 539 кал/г. Для плавления скрытая теплота аммиака равна 84 кал/г. Для воды она равна 79,9 кал/г. В условиях низких температур наиболее важна скрытая теплота плавления. Поэтому можно сказать, что аммиак по сравнению с водой в этом плане имеет преимущество. Кстати, и теплоемкость его паров, равная 0,520, несколько превышает таковую для водяного пара при постоянном давлении (0,488). Теплоемкость важна для погоды и климата. Климат на Земле стабилизирует гидросфера, и прежде всего океаны. Они создают определенную инерционность в изменении климата. Если бы теплоемкость воды была в 10 раз меньше, то изменения погоды были бы в принципе непредсказуемы. Все менялось бы слишком быстро. Поэтому океаны и моря, состоящие из жидкого аммиака, будут смягчать большие колебания температуры, как это происходит на Земле благодаря гидросфере. У аммиака дипольный момент равен 1,47. У воды он равен 1,85. Диэлектрическая постоянная у аммиака равна 22 (при температуре –34 °C). Для воды диэлектрическая постоянная равна 81,1 (при температуре +18 °C). Это значит, что аммиак примерно в четыре раза хуже как изолятор, чем вода. Он и менее вязок, чем вода. И тоже примерно в четыре раза. Проводимость раствора соли в жидком аммиаке обычно больше, чем проводимость водного раствора той же соли. Биологические преимущества аммиака перед водой заключаются в том, что он обладает большей текучестью и поэтому является эффективным электролитическим растворителем.
Само диссоциация у аммиака почти такая же, что и у воды. Аммиак образует положительный ион NН+, который соответствует иону гидроксония Н 3О+ у воды. Оба эти иона при реакции отдают протон Н+. Аммиак образует отрица-тельный ион NH 2–, а вода ОН—. Таким образом, аммиачные кислоты характеризуются катионами NH 4+ и H+.
Читать дальше