Свойства сероводорода таковы, то в нем растворяется ряд кислот, а также галоидных соединений, арил- и алкил-замещенных сульфидов аммония, а также многие органические вещества. Опытным путем было установлено, что целый ряд химических индикаторов меняет окраску при переходе из кислот в основную относительно Н 2S среду. Другими словами, изменение окраски происходит в присутствии кислот и оснований, которые соответствуют этому растворителю и которые растворяются в нем. Ясно, что те химические соединения, которые при диссоциации в растворе дают ион Н+ (протон), в жидком сероводороде должны вести себя как кислоты. Значит, те водные кислоты, которые в нем растворяются, сохраняют кислотный характер. Одна из таких кислот — это НCl. Соединения, которые дают отрицательные ионы HS— или S 2—, в системе H 2S будут основаниями. Основание вступает в реакцию с кислотой, и образуются соль и растворитель.
Если мы имеем дело с аммиаком, то там протекает реакция, аналогичная гидролизу в воде. Она называется сольво-лизом. Это реакция, обратная нейтрализации. Соединения реагируют с растворителем, и при этом обычно образуется по одной молекуле основания и кислоты. Любопытно, что одно и то же соединение может вести себя и как кислота, и как основание. Примером этого могут служить спирты. Они в водном растворе ведут себя как кислоты по отношению к органическим кислотам, которым в этом случае приписываются основные свойства. Ряд веществ также ведет себя подобным образом в жидком сероводороде.
При низких температурах жидкого сероводорода некоторые соединения, которые содержат углеродные цепочки, могут стать устойчивыми настолько, чтобы быть лабильными. В других условиях все происходит по-иному. Например, наиболее широко распространенный на Земле азот, который при наших обычных температурах образует только короткие нестабильные цепочки, при низких температурах, характерных для жидкого сероводорода, может образовывать достаточно прочные связи. Эти связи могут в определенной степени заменить углерод-углеродные связи.
Далее рассмотрим фтористоводородную кислоту НF. Ее точка замерзания равна — 83,1 °C. Это немногим выше, чем у сероводорода. Другие свойства фтористоводородной кислоты с биологической точки зрения весьма приемлемые. Она остается в жидком состоянии до температуры +19,54 °C (при нормальном атмосферном давлении). Для жизни это важно, так как она остается жидкой в широком диапазоне температур. Скрытая теплота перехода для плавления весьма высока. Она равна 54,7 кал/г. Для парообразования скрытая теплота равна 362 кал/г. Обе эти величины высоки, хотя и ниже, чем для воды. Зато диэлектрическая постоянная и диполь-ный момент у этой кислоты немного больше, чем у воды. Поэтому можно заключить, что жидкий фтористый водород является хорошим протонным растворителем с отрицательным ионом F—. Диссоциация его протекает по схеме:
2НF ^ H 2F + H+.
Положительный ион Н+ образуется обязательно, поэтому фтористый водород и является протонным (Н+) растворителем. Электропроводность его мала. Он является хорошим изолятором. Теплопроводность его также невелика, поэтому он обеспечивает хорошую теплоизоляцию. С биологической точки зрения это очень важно, поскольку при этом обеспечивается устойчивость органических систем при высоких температурах.
Во фтористом водороде хорошо растворяется вода. В данном случае она выступает в качестве основания. Во фтористом водороде растворяются и фтористые металлы, а также некоторые цианиды, нитраты и сульфаты. Нерастворимыми во фтористом водороде остаются галоидные соединения, кроме фтористых, а также окислы. Не растворяются и углеводороды. Но спирты, альдегиды, кетоны, эфиры, органические кислоты и их ангидриды, а также, по-видимому, азотистые соединения и углеводы образуют проводящие растворы с отрицательным ионом F—, а также со сложными катионами, которые состоят из органической молекулы, ассоциированной с протоном. Многие другие органические соединения разрушаются или же полимеризуются в жидком фтористом водороде. Фтористый водород образует также молекулярные соединения, которые подобны по своим свойствам гидратам.
Но какое это имеет отношение к жизни? На жидком фтористом водороде может быть основана органическая система, если вместо ОН и О в окислах подставить соответственно F или HF2 и F2. Фторирование заменяет окисление. Оно обеспечивает выделение необходимой для жизни энергии. Фтор обладает большими энергиями связи. Поэтому он эффективнее, чем вода. Что касается свободного фтора, то он должен быть одним из атмосферных газов на данной гипотетической планете. Вместо кислорода — фтор. Живые существа в этих неземных условиях должны дышать не кислородом, а фтором. Они должны вместо воды пить жидкую фтористоводородную кислоту. Для земных организмов это смертельно.
Читать дальше