Частицы также классифицируются по силе их взаимодействия. Частицы, участвующие в сильном взаимодействии, называются адронами. Фермионы, не участвующие в сильном взаимодействии, называются лептонами. Как правило, лептоны легче адронов, однако есть и исключение: масса τ-лептона ~ 1.8*m|.
p
Число адронов (~300) существенно превышает число лептонов. Сейчас обнаружено пять лептонов (e, NU, τ, V |,
e V |), однако почти несомненно существует и шестой лептон ю τ-нейтрино. (((НАПОМИНАЮ, ЧТО ю В ИНДЕКСЕ ОБОЗНАЧАЕТ NU)))
Адроны с полуцелым спином называются барионами; их масса m > m|. Адроны с целым спином — мезонами.
p
Особое место занимают частицы-переносчики — бозоны. Их ± 0 масса (кроме W||-, Z|-бозонов) равна нулю.
Подчеркнем, что почти все частицы испытывают все четыре взаимодействия. Исключение составляют лептоны, которые не взаимодействуют сильно, и частицы-переносчики, о которых следует сказать особо. Фотон и W||-, Z|-бозоны переносят электрослабое взаимодействие, глюоны — сильное. Все частицы испытывают действие гравитации.
Гипотетический тяжелый X-бозон должен испытывать все четыре взаимодействия.
Адроны имеют размеры ~10**-13 см. В соответствии с современными представлениями «истинными» элементарными частицами должны быть точечные. Быть может, в соответствии с основным содержанием книги следовало бы говорить о «планковских точках» размерами ~10**-33 см. Поэтому адроны не являются «истинно» элементарными частицами, адроны состоят из иных пра-частиц.
В 1964 г. Геллман и Цвейг выдвинули гипотезу: адроны состоят из элементарных дробно-заряженных частиц — кварков. При конструировании адронов (их характеристик) из кварков следует руководствоваться следующими правилами: 1) все квантовые числа кварков, кроме массы, аддитивны, 2) фермионы состоят из трех кварков, бозоны из двух, 3) суммарный цвет кварков в адронах всегда равен нулю.
Сейчас твердо обнаружено пять сортов кварков. В течение последних лет появлялись сообщения о существовании шестого кварка, однако убедительного доказательства его существования нет. Обнаружение шестого кварка исключительно важно для построения теории большого объединения. Она базируется на допущении, что числа фундаментальных фермионов (лептонов) и адронов (кварков) равны. Поскольку число лептонов должно равняться (по крайней мере) шести, то должно быть таким же и число кварков.
Важно отметить, что в последнее время в физике микромира развиваются представления о том, что основным элементом геометрии — точкой — являются линейные элементы. Подробнее об этом см. разд. 10, гл. 2.
О некоторых свойствах элементарных частиц и их взаимодействиях см. Дополнение.
Ландау Л.Д., Лифшиц Е.М. Курс теоретической физики. М.: Наука, 1973. Т.1. Механика, с.9.
Это утверждение верно с точностью до весьма малых релятивистских поправок, которые можно учесть при вычислении суммы углов.
См., например: Рашевский П.К. Курс дифференциальной геометрии. М.: ГИТТЛ, 1956. Кроме того, дифференциальная геометрия на разных уровнях излагается во многих книгах, посвященных теории относительности.
Более подробно о взаимосвязи между ньютоновской динамикой и евклидовым пространством см. в кн.: Яглом И.М. Принцип относительности Галилея и неевклидова геометрия. М.: Наука. 1969.
Строго говоря, здесь пренебрегается возможным вращением системы. Обобщение рассуждений, учитывающих вращение, не представляет трудностей.
Подробнее доказательство этого утверждения представлено в кн.: Ландау Л.Д., Лифшиц Е.М. Теория поля. 6-е изд. М.: Наука, 1973, С.16.
Напоминаем, что группой называется совокупность математических объектов, для которых определена некая операция, иногда называемая умножением. Группа определена, если выполняются следующие условия: 1) если a, b элементы группы, то произведение a*b — также элемент группы; 2) (a*b)*c=a*(b*c); существует единичный элемент I, такой, что для любого элемента выполняется равенство I*a=a*I=a; существует обратный элемент a**-1: a*a**-1=I.
Количественно эта проблема не решена полностью и сейчас, хотя невылетание кварков реализуется в рамках некоторых упрощенных моделей.
Наиболее просто взаимосвязь условия m||||| = 0 и GAMMA калибровочной инвариантности показана в ст.: Вайнберг С. Свет как фундаментальная частица//УФН. 1976. Т.120. С.677. Подробнее о калибровочной инвариантности см. в кн.: Коноплева Н.П. Попов В.Н. Калибровочные поля. М.: Атомиздат. 1980; Окунь Л.Б. Физика элементарных частиц. М.: Наука, 1984.
Читать дальше