Но нам могли бы ещё возразить: если релятивистские излишки энергии были бы иллюзиями, то это непременно проявилось бы при сопоставлении энергии частиц с энергиями гамма-квантов, которые измеряются независимыми способами. Увы – хотя арсенал способов измерения энергии гамма-квантов довольно-таки богат [Э2], об их независимости не может быть и речи. Целый ряд методов основан на измерениях энергий конверсионных электронов и вторичных электронов, которые выстреливаются в результате комптон-эффекта, фотоэффекта, и образования электрон-позитронных пар – но « магнитный анализ спектров вторичных электронов… является наилучшим методом точного измерения энергии γ-квантов » [Э2]. По результатам этого знакомого «наилучшего метода» калибруются остальные методы – в которых определяются пороги ядерных реакций или энергии вторичных ядерных частиц, а также такой, казалось бы, обособленный метод, как измерение длины волны гамма-излучения с помощью дифракции на кристалле [М1]. Этот метод сохраняет свою обособленность, опять же, лишь при малых энергиях гамма-квантов. Но, уже при энергиях ~0.1 МэВ, соответствующая длина волны гамма-излучения на порядок меньше, чем расстояния между атомными плоскостями в кристаллах, что весьма затрудняет – особенно при скользящих углах падения – определение индекса брэгговской дифракции; так что калибровка здесь необходима. Выходит следующее: если, как мы полагаем, метод магнитного отклонения даёт не истинную, а релятивистски завышенную энергию, то с аналогичным завышением определяются и энергии гамма-квантов!
Впрочем, здесь можно было до некоторой степени избегать больших завышений, если при калибровке методом магнитного отклонения использовать частицы с достаточно большой массой – поскольку энергия, которая, согласно (4.4.2), близка к предельной у электрона, далека от предела у протона. Отсюда, кстати, вытекает возможность получения ещё одного свидетельства о наличии ограничения у кинетической энергии частицы. Известно множество ядерных реакций с порогами всего в несколько МэВ [Б2]. Эти реакции инициируются, например, протонами, для которых энергия в несколько МэВ является ничтожной, и есть гарантия, что пороги при этом измеряются без релятивистского завышения. Эти же реакции инициируются и нейтронами, и гамма-квантами – была бы их энергия выше пороговой. Электроны, которые имели бы энергию в несколько МэВ, инициировали бы эти реакции, казалось бы, ещё охотнее, чем протоны – ведь электроны притягиваются к ядру, а не отталкиваются от него. Но нет: что-то мешает электронам инициировать ядерные реакции. Считается, что релятивистские электроны, при взаимодействии с ядрами, испытывают почему-то лишь упругое рассеяние [К4]. Налицо странная асимметрия: вылететь из ядра, прихватив оттуда немалую энергию, электрон может (при бета-распаде) – а ударить по ядру, сообщив ему такую же энергию, электрон не может! Что по этому поводу говорит физика высоких энергий? А она по этому поводу хранит гробовое молчание. Высокие энергии оказалось гораздо практичнее измерять не по электронной, а по протонной шкале. Тут уж не до единства измерений – быть бы живу! Ибо из опыта ясно, что, скажем, 3 МэВа у протона – это полноценные 3 МэВа, а 3 МэВа у электрона – это пустышка.
Но как же так? Неужели не проводились эксперименты по прямому измерению энергии быстрых электронов – калориметрическим методом – при известном ускоряющем вольтаже? Ведь было сооружено множество ускорителей. И нас уверяют, что без релятивистского роста энергии у быстрых частиц, ни один ускоритель не работал бы! Так покажите нам его, прямо измеренный релятивистский рост! Где же изобилие публикаций на эту тему? В это трудно поверить, но на эту тему известна всего одна (!) публикация – о которой релятивисты если и упоминают, то делают это как-то странненько, сквозь зубы. В чём же был секрет у Бертоцци [Б3], если только он один и смог прямо измерить релятивистский рост? Бертоцци использовал двухступенчатую схему ускорения электронных сгустков. На первой ступени электроны ускорялись статическим электрическим полем, формируемым с помощью высоковольтного генератора Ван-де-Граафа. А второй ступенью был линейный индукционный ускоритель. При известном ускоряющем вольтаже, автор измерял две величины – скорость и энергию электронов. Скорость он определял пролётно-импульсным методом: по времени, разделявшему два всплеска тока, которые наводились пролетающим сгустком в электродах, разнесённых на известное расстояние. А об энергии электронов автор судил по нагреву алюминиевого стаканчика, который улавливал разогнанные электронные сгустки. Если релятивистский рост энергии имеет место, то, при изменении ускоряющего вольтажа, скорость электронов должна была, практически, не изменяться (будучи близкой к скорости света), а их энергия должна была изменяться весьма заметно. На первый взгляд, именно такую зависимость и демонстрируют пять экспериментальных точек, представленных автором на графике. Но не всё было так просто. В таблице (см. ниже) первые два столбца отображают ускоряющий вольтаж и отношение измеренной скорости электронов к скорости света. Но вот, внимание: « При вольтажах 0.5, 1.0 и 1.5 МэВ линейный ускоритель не был включён » (перевод наш) – эту особенность отражает третий столбец в таблице. И, наконец: « Измерения энергии проводились для ускоряющих вольтажей 1.5 и 4.5 МэВ » (перевод наш) – эту особенность отражает последний столбец в таблице.
Читать дальше