Правда, здесь возможен любопытный выход: заключать крошечные кристаллические усилители в столь же миниатюрные полупроводниковые электрохолодильники (о них вы читали выше — в главе «Погоня за теплом»). Такие опыты ставятся и дают хорошие результаты.
Все же иногда случается, что кристаллический усилитель, несмотря на всяческие меры предосторожности, без видимых причин вдруг меняет свойства. Не всегда приборы одного типа работают одинаково. Причина здесь одна: недостаточно изучены особенности полупроводниковых устройств, не разработана до конца технология их производства. Поэтому совсем неверно думать, что всюду радиолампы сразу сменятся полупроводниками.
Полупроводники оказываются весьма полезны и в развитии вакуумной Электроники. Из них вырабатывают новые высоко эффективные источники электронов для радиоламп, устройства, поджигающие разряд в ртутных {123} выпрямителях, и многое другое. Не вражда, а дружеское соревнование разворачивается между полупроводниками и вакуумными приборами.
В обеих областях впереди большой исследовательский труд, поиски новых систем, новых конструктивных решений. Замечательными изобретениями обогащается вакуумная электроника. Вместе с тем с каждым годом совершенствуются полупроводниковые радиоприборы. Огромная армия ученых, инженеров, радиолюбителей неустанно работает, своим трудом прокладывая дорогу кристаллам.
ПРОИЗВОДСТВО ПОД МИКРОСКОПОМ
В кристаллическом приборе все компактно и просто. Но нелегко дается эта простота. Филигранный труд вложен в миниатюрный полупроводниковый усилитель.
Сначала германиевую болванку на специальном станке распиливали алмазной пилой на тончайшие пластинки. Их и в руку не возьмешь — так они малы. Тем не менее их сортировали, очищали химическими растворами. Глядя в микроскоп, к кристаллику присоединили почти невидимые усики проводов, а противоположные концы припаяли к проволочкам потолще. Потом покрыли прибор защитным лаком, заключили в корпус, все пустоты заполнили особой пластмассой. Некоторые операции приходилось вести в безвоздушной среде,- а правильность сборки то и дело контролировать электрическими измерениями. Но и этим дело далеко не завершается. Много еще придется повозиться с полупроводниковым усилителем, прежде чем он будет окончательно готов.
Такая ювелирная работа почти вся выполняется вручную. И легко представить себе, каким огромным опытом, каким тонким мастерством должны обладать сборщики полупроводниковых радиоприборов.
Инженеры и ученые добиваются сейчас механизации и {124} даже автоматизации производства кристаллических диодов и триодов.
Вместо алмазной пилы для резки германия и кремния стали применять ультразвук. Лезвие безопасной бритвы, приделанное к часто вибрирующему стержню ультразвукового генератора, входит в хрупкий кристалл, как столовый нож в масло. А обычным способом обработать иной кристаллический полупроводник так же трудно, как, скажем, выпилить узорную звездочку из чайного сухаря. Ультразвук здесь экономит материалы (получается несравненно меньше опилок, не нужен драгоценный алмаз), ускоряет работу, а главное — открывает возможность ее механизации.
Применяется и оригинальный способ электрохимической обработки кристаллов. Для некоторых видов плоскостных полупроводниковых триодов нужно получать необычайно тонкие (0,005 миллиметра) пластинки германия. Никакой механической отделкой их не получишь. Но выход все же был найден.
На кристаллическую пластинку германия направляют с двух сторон тонкие струи травящего раствора. Они одновременно играют роль проводов: через них сквозь слой полупроводника пропускается электрический ток от батарейки. Полторы — две минуты кристалл разъедается этим электрохимическим способом. С двух сторон в пластинке германия образуются лунки, между которыми остается тончайшая пленка полупроводника.
Затем поверхность пленки таким же электрохимическим способом покрывают слоями металла.
Во время обработки нужно постоянно и исключительно тонко регулировать силу тока в струях раствора и в полупроводнике. Регулировку ведут световым лучом, направленным на пластинку германия. Ведь этот полупроводник значительно повышает свою проводимость при освещении. Сильнее направленный на него свет — и больше электропроводность пластинки; следовательно, и ток, {125} текущий через него и струи травящего раствора увеличиваются.
Читать дальше