Напомню, что эта теорема — метрическая, то есть содержит в себе рецепт определения расстояний. На плоскости она имела простейший школьный вид:
S 2= а 2+ b 2
На искривленной поверхности изменилась: S 2стало не равно S 2= а 2+ b 2. Не стоит выписывать измененной формы этой теоремы. Скажу лишь, что для определения квадрата расстояния на любой искривленной поверхности а 2и b 2надо на что-то умножить да еще в формуле появится член с произведением а на b. (Тут к тому же а и b будут бесконечно малыми величинами.) Аналогично изменится вид трехмерной теоремы Пифагора в изогнутом трехмерном пространстве.
А в мире Минковского? На четырехмерной диаграмме быстрых движений?
Эта диаграмма строилась на основе постулатов Эйнштейна. В результате на ней отобразилась связь пространства и времени: появились гиперболические калибровочные линии, отсекающие на разных осях разные масштабы длин и длительностей. Это определило выражение для квадрата интервала (то есть, опять напоминаю, расстояния между двумя событиями в четырехмерном пространственно-временном мире). В двенадцатой главе оно было записано так: S 2= l 2– c 2t 2. Расшифровав по «прямой» пространственной теореме Пифагора l 2 как сумму х 2+ у 2+ z 2, получим:
S 2= х 2+ y 2+ z 2— c 2t 2.
Очень похоже на теорему Пифагора, только четвертое слагаемое отрицательно. Но от этого можно избавиться. Ради симметрии сделаем замену: вместо -c 2t 2будем писать τ 2. Тогда сходство, во всяком случае по математической форме, будет полным.
Таково метрическое правило для измерения интервала на диаграмме частной теории и относительности — без учета тяготеющих масс. Тут мир не имеет кривизны.
Ну, а в искривленном мире выражение интервала усложнится — подобно тому, как усложнилась теорема Пифагора на шаре или седле. Каждый член правой части формулы на что-то умножится, появятся члены с произведениями ху, хz и т. д. Что же получится?
Дабы подчеркнуть неравномерную кривизну мира, все отсчеты снабдим значком Δ (дельта) — это будет означать, что измерения ведутся в достаточно малой области мира, где кривизна его остается постоянной. И тогда (поверьте на слово) интервал между двумя близкими событиями в искривленном мире пространства — времени будет выглядеть так:
ΔS 2= g 11Δx 2+ g 22Δy 2+ g 33Δz 2+g 44Δτ 2+ 2g 12ΔxΔy + 2g 13ΔxΔz + 2g 14ΔxΔτ + 2g 23ΔyΔz + 2g 24ΔyΔτ + 2g 34ΔzΔτ
Множители g, снабженные парой индексов (от 1 до 4), — коэффициенты кривизны. Их всего десять. От них-то, в конечном итоге, и зависит искривление мира. А сами они зависят от масс и расстояний до окружающих тел.
Написанное выражение носит громкий и почетный титул — фундаментальный метрический тензор. Отметив музыкальную звучность термина, воздержимся от расшифровки его смысла (это чистая математика). По существу, здесь не что иное, как усложнение и обобщение «покроя» школьных «пифагоровых штанов» на случай искривленного четырехмерного мира, диаграммы движения в эйнштейновском моллюске отсчета.
В далекой от звезд и планет пустоте при равномерном движении моллюск обращается в аквариум и никакой кривизны мира нет. Фундаментальный метрический тензор становится интервалом специальной теории относительности. В этом случае (при обратной замене τ 2на —c 2t 2) g 11= g 22= g 33=1, g 44=-c 2, a g 12= g 13= g 14= g 23= g 24= g 34=0
Там же, где нет вокруг полной пустоты, где сравнительно недалеки звезды и планеты, должны иметь место отклонения от этих «нормальных» значений метрических коэффициентов.
Эллиптическая кривизна
Следующий шаг — разгадка математической зависимости между метрическими коэффициентами и массами движущегося вещества.
Шаг труднейший.
Коэффициентов — десять. Значит, нужно написать систему из десяти уравнений, связывающих эти коэффициенты с массой и расстояниями от точки наблюдения до окружающих тел.
Гений и труд Эйнштейна отыскали эту систему — систему мировых уравнений.
Нам с вами не стоит даже пытаться разбирать логику вывода и выписывать уравнения. Удовлетворимся сообщением, что они существуют.
Еще сложнее и тоньше дальнейшая работа — решение системы мировых уравнений. Тут Эйнштейн и его последователи столкнулись с трудностями поистине титаническими. До нашего времени задача полностью не решена. Добыты только отдельные частные решения, годные лишь ограниченно, при всевозможных упрощениях.
Тем не менее результаты огромны: создана математическая теория тяготения, в которой действительно нет, как таковой, силы тяготения! Есть только силы инерции.
Читать дальше