Чтобы понять результат вычислений Шредингера, мы должны знать, что решения его уравнения предсказывают вероятность того, что электрон будет обнаружен в некоторой точке пространства, а не точное положение электрона в любой момент, как в классической физике. Эти решения называются атомными орбиталями . В таком названии выражен намек на планетарный электрон на орбите, но без строгого смысла этой классической концепции, здесь неприменимой.
Рисунок 5.5 показывает форму обладающей самой низкой энергией атомной орбитали в атоме водорода, орбитали электрона в нормальном (основном) состоянии атома. Иллюстрация изображает вероятность обнаружения электрона в разных участках области с помощью плотности тени в них. Как можно видеть, благодаря тому, что облако является более плотным вблизи ядра, следует считать, что электрон «роится» вокруг и вблизи ядра, как осы вокруг вазы с вареньем, и с наибольшей вероятностью находится у самого ядра. Если бы вы мысленно помещали маленький полый шар в разных местах атома, вы обнаруживали бы электрон внутри шара чаще, когда шар располагается у ядра. Облако вероятности сферически симметрично (предпочтительные направления отсутствуют), поэтому мы можем также представить орбиталь сферической поверхностью, которая охватывает большую часть облака. Однако не следует думать, что орбиталь имеет резкий край: как показывает изображение на рисунке, вероятность обнаружить электрон в определенной точке постепенно стремится к нулю и — по крайней мере в принципе — достигает нуля лишь на бесконечном удалении от атома.
Рис. 5.5.Здесь изображены некоторые представления s -орбитали самого низкого энергетического уровня для атома водорода. Диаграмма слева показывает вероятность обнаружения электрона в каждой точке в виде плотности тени. Сопровождающий ее график показывает, как вероятность экспоненциально убывает с увеличением расстояние до ядра. Диаграмма справа показывает «граничную поверхность», представляющую собой поверхность, охватывающую 90 процентов вероятности обнаружения электрона.
С этой точки зрения все атомы бесконечно велики, что находится в резком противоречии со взглядом на атомы, как на очень маленькие. Практически, конечно, вероятность нахождения электрона далеко от ядра (больше, чем на расстоянии в несколько сот триллионных метра) пренебрежимо мала. Лучше представлять себе атом водорода с электроном, находящимся в ограниченной области пространства очень близкой к ядру (в области с радиусом около 100 триллионных метров, 100 пикометров, 100 пм). Эта сферическая орбиталь с низшим уровнем энергии называется s -орбиталью. Было бы приятно думать, и в любом случае это полезное мнемоническое правило, что s означает сферичность; но на самом деле это название создано по техническим причинам, связанным с шириной линий в спектре атома водорода.
Одна из особенностей, которая станет яснее, когда мы больше узнаем о квантовой теории, но о которой нам необходимо знать уже на этой стадии, состоит в том, что из факта сферической симметричности орбитали, изображенной на иллюстрации, следует, что электрон, который она описывает, имеет нулевой момент импульса, момент количества движения вокруг ядра. Мы встретили момент импульса в главе 3, где видели, что он подобен импульсу, но связан с движением по кругу, а не по прямой линии. Все, о чем нам надо знать на этом этапе, это о волновом свойстве орбитали, заключающемся в том, что о моменте импульса можно судить по тому, как быстро меняется плотность тени, когда мы путешествуем вокруг ядра. Этот факт может показаться лишь незначительной технической деталью, однако вскоре мы убедимся, что он составляет основу великолепия мира.
Когда Шредингер решил свое уравнение для атома водорода, он обнаружил, что существует много других атомных орбиталей, каждая из которых соответствует более высокой энергии, чем энергия основного состояния. В качестве аналогии можно привести колебания сферы с обертонами собственной частоты, соответствующими состояниям с более высокой энергией. Электрон может подняться на эти орбиты, если сообщить ему достаточную энергию, например, с помощью вспышки молнии электрического разряда или если он поглотит энергию биения фотонов, которые мы называем вспышкой света.
У этих орбиталей с более высокой энергией есть несколько характеристик, о которых нам следует знать. Во-первых, имеется целая серия s -орбиталей, каждая из которых является сферической, но с различными расстояниями от ядра: они образуют серию концентрических оболочек, подобную русской матрешке, с ядром в центре. Ни в одной из этих s -орбиталей электрон не имеет момента импульса, поэтому его можно обнаружить у самого ядра. И снова, не дайте одурачить себя, думая, что все это лишь педантичные академические детали: на таких деталях выстроены города и огромные индустрии.
Читать дальше