Ультразвуковые волны, длины волн которых даже короче, чем таковые самых пронзительных звуков, которые мы можем услышать, весьма эффективно отражаются даже достаточно маленькими объектами. Летучие мыши пользуются преимуществами этого факта. При полете они испускают непрерывный писк, который представляет собой ряд ультразвуковых импульсов с частотами от 40 000 до 80 000/с, то есть с длиной волны от 8 до 4 миллиметров. Даже тонкий прутик или мелкое насекомое будут иметь тенденцию отражать звуки столь короткой длины волны; летучая мышь, чей писк имеет чрезвычайно короткую продолжительность, ловит слабое отраженное от предметов эхо. Таким образом, летучая мышь летит на слух и может точно и эффективно продолжать полет, даже в условиях полной слепоты. Процесс, посредством которого летучая мышь ориентируется в пространстве, называется «эхолокацией».
Люди научились использовать этот эффект, испуская при помощи специального прибора пучки ультразвуковых волн под водой. Они отражаются от различных морских объектов: дна моря, выступов на нем, камней, лежащих на морском дне, или плывущих косяков рыбы или субмарин. Такой прибор называется «гидролокатором» или «сонаром». SONAR (Sound Navigation And Ranging) — это аббревиатура, расшифровывающаяся как «звуковая навигация и размерность» (в данном случае слово «размерность» означает определение геометрических размеров тел, но, зная геометрические размеры и скорость распространения звука в воде, мы всегда можем определить и расстояние до объекта).
Несколько раз в данной книге я упоминал понятие теплоты, особенно в конце седьмой главы, когда рассматривал сохранение энергии. Однако я не остановился на этом понятии и не стал рассматривать его подробно, так как для этого сначала требовалось подробно рассмотреть свойства жидкостей и особенно газов. Теперь мы уже достаточно хорошо познакомились с этими свойствами, а поэтому желательно опять вернуться к рассмотрению понятия «теплота».
Теплота наиболее хорошо знакома нам по личным ощущениям. Мы чувствуем горячее и холодное и знаем, что подразумеваем, когда говорим, что один объект «более горячий», чем другой. Характеристика объекта, которая определяет, насколько данный объект горячий или холодный, называется его «температурой».
Температура имеет огромное значение для физиков, потому что очень многие из свойств материи, с которой они имеют дело, изменяются вместе с температурой. В предыдущей главе, например, я упомянул, что скорость звука изменяется в зависимости от температуры. Еще, например, объем данной массы воды увеличивается, когда температура ее находится вблизи точки кипения, а значит, плотность ее уменьшается. Горячая вода обладает более слабыми силами сцепления, чем холодная, так же ведут себя и вязкость, и поверхностное натяжение, которые уменьшаются по мере повышения температуры. Даже такие кажущиеся неизменяемыми величины, как длина железного прута, тоже изменяются в зависимости от температуры.
Из этого всего следует, что, если физик собирается сделать некие надлежащие обобщения, рассматривающие всю Вселенную, он должен знать, как свойства материи изменяются в зависимости от температуры, и, конечно, должен быть способен точно измерить эту температуру. Наши субъективные чувства недостаточно точны в зависимости от разных условий и иногда чрезвычайно неточны, поэтому для этой цели они непригодны.
Например, полированная металлическая поверхность, подвергнутая воздействию температуры замерзания воды, при прикосновении будет казаться нам намного более холодной, чем полированная деревянная поверхность, подвергнутая воздействию тех же самых условий. Еще больший парадокс можно получить в результате известного эксперимента. Если вы поместите одну руку в ледяную воду, а другую руку — в горячую и подержите их там в течение нескольких секунд, затем поместите обе руки в один и тот же сосуд с теплой водой, вы будете одновременно чувствовать, что теплая вода стала горячей (вашей холодной рукой) и холодной (вашей горячей рукой).
Поэтому появляется необходимость в средствах, которые позволили бы объективно измерять величину температуры. Логический метод состоит в том, чтобы найти некое свойство, которое изменяется в очевидно однородной манере одновременно с изменением температуры, а затем связать установленные изменения в температуре с установленными изменениями в этих свойствах. Для этой цели физики используют множество различных температурно зависимых свойств, но наиболее часто используемое свойство, характерное для диапазона температур, с которым мы встречаемся в повседневной жизни, — это свойство объемного расширения. Объем данной массы материи обычно увеличивается с повышением температуры и уменьшается по мере ее падения. (Я говорю «обычно», потому что и из этого правила встречаются некоторые исключения.)
Читать дальше