Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эту разницу можно усилить при помощи различных методов отбора некоторых обертонов и их последующего усиления. Давайте посмотрим, как это делается.

Один источник звуковых колебаний может заставить другой вибрировать совместно с ним, издавая ту же самую звуковую волну, что и первый, и воспроизводить тот же самый звук. Если вибрирующий камертон посадить на основание ручкой вниз, то его звук внезапно становится громче, потому что теперь вместе с ним вибрирует все основание.

Такие «вынужденные колебания» не являются даже результатом прямого физического контакта между твердыми телами. Вполне достаточно косвенного контакта сквозь воздух. Данная вибрация создает пульсацию воздуха в виде продольных волн; эти волны, в свою очередь, заставляют совместно вибрировать барабанную перепонку. Барабанная перепонка будет двигаться внутрь, когда на нее воздействует область сжатия, и наружу, когда на нее воздействует область разрежения; она способна отклоняться на большие расстояния от положения равновесия, по мере того как области становятся более сжатыми или более разреженными. Таким образом, через такие принудительные колебания, при которых барабанная перепонка точно дублирует первоначальную вибрацию, благодаря сложному механизму восприятия звуков человеком (который мы не будем описывать здесь), мы способны судить о высоте тона, громкости и даже тембре звука.

Однако существуют случаи, когда некоторая определенная частота может быть «вызвана» на втором объекте еще более легко. Представьте себе, например, что вы раскачиваете качели с ребенком. Ребенок на качелях представляет собой разновидность маятника и имеет собственный период колебаний. Если вы начинаете последовательно, через произвольные интервалы времени подталкивать его, то иногда вы будете создавать встречное движение, «притормаживая» его, поскольку ваше движение и движение качелей будут направлены противоположно. Продолжая далее, вы обратите внимание на тот факт, что такие толчки расходуют большое количество вашей энергии. Однако если вы так рассчитали свои толчки, что прикладываете их в тот момент, когда качели начинают двигаться от вас, то есть они действуют вместе с собственными колебаниями качелей, то таким образом добавляете приращение к их скорости, все более увеличивая ее с каждым колебанием и с каждым ритмичным толчком. Потратив гораздо меньшее количество энергии, вы получите значительно более быстрое и расширенное колебание. (Когда рота солдат пересекает мост, звучит команда: «Сбить шаг!» Иначе если все солдаты идут в ногу, то может быть как в случае, когда сильный стук шагов роты совпал с собственным периодом колебаний моста, мост начал раскачиваться все больше и больше и в конечном итоге разрушился.)

Аналогичная ситуация существует и для звуковых волн. Звуковая волна определенного тона каждой своей областью сжатия и разрежения будет подталкивать другой объект. Если ритм «толчков и натяжений» не будет соответствовать периоду собственных колебаний объекта назначения, то вынужденные колебания могут быть получены только за счет затрат значительного количества энергии, используемой для того, чтобы преодолеть эти собственные колебания. Однако если частота звуковых колебаний соответствует периоду собственных колебаний объекта назначения, то последний начинает вибрировать все больше и больше. Это явление называется «резонансом» (от латинских слов, означающих «зазвучать снова»).

Любая данная звуковая волна произведет гораздо большее количество колебаний в объекте резонирования, чем в любом другом; фактически только объект резонирования может начать издавать звуковые волны достаточно громкие, чтобы быть слышимыми. Предположим, например, что вы поднимаете крышку пианино, открываете струны и нажимаете ногой на педаль громкости, чтобы дать возможность этим струнам свободно вибрировать. Теперь спойте короткую, громкую ноту. Только те из струн, которые вибрируют в частоте этой ноты, будут резонировать, и когда вы прекратите петь, то услышите, что пианино тихо отзывается той же самой нотой.

Звук музыкальных инструментов зависит от резонанса материалов, из которых они сделаны, их структура усиливает и добавляет богатую окраску к извлекаемым из инструмента звукам. Фортепьяно имеет специальный «резонансный щит», называемый «декой», находящийся под струнами и способный резонировать с различными нотами. Если бы деки не существовало, то звуки, которые издавали бы струны фортепьяно при игре на нем, были бы гораздо тише.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x