Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Сохранение углового количества движения Тело которое обладает только угловым - фото 11
Сохранение углового количества движения

Тело, которое обладает только угловым количеством движения, не может передать неуравновешенное поступательное количество движения к другому телу, поскольку передавать ему нечего. Безусловно, вращающиеся колеса автомобиля дают поступательное количество движения. Но в этом случае, однако, равное по величине, но противоположное по знаку количество движения дает земля. Эти два поступательных импульса складываются, чтобы в результате дать нуль. Любой автомобилист, который когда-либо пробовал двигаться по льду, подтвердит этот факт. Как только трение уменьшилось до величины, когда оно очень малое или никакое количество движения не может быть передано земле, автомобиль получит малое или никакое количество движения, и колеса будут прокручиваться вхолостую.

Глава 7.

РАБОТА И ЭНЕРГИЯ

Рычаг

Законы сохранения нравятся ученым. Во-первых, закон сохранения устанавливает пределы возможностей. При рассмотрении нового явления очень удобно исключить все объяснения, которые повлекли бы нарушение одного из законов сохранения (по крайней мере, пока не придут к выводу, что ничего, за исключением такого нарушения, не может объяснить явление). С оставшимися возможностями тогда гораздо легче работать.

В дополнение ко всему имеется интуитивное чувство, что ничто не возникает из ничего. Поэтому кажется надлежащим и правильным предположить, что Вселенная обладает определенным ограниченным количеством тех или других свойств материи (типа количества движения) и что в то время, как это количество распределено различными способами среди различных тел Вселенной, общая сумма их не может быть ни увеличена, ни уменьшена.

Следовательно, если мы наблюдаем ситуацию, в которой кажется, что в некотором отношении что-то получено из ничего, сразу имеет смысл начать поиск некоторого фактора ситуации, который уменьшается, компенсируя это увеличение. Может оказаться, что это — два фактора, объединенные некоторым способом, которые образуют константу. В случае углового количества движения, например, момент инерции может изменяться по желанию и может, по-видимому, появляться из ниоткуда или исчезать в никуда.

Угловая скорость, однако, всегда сразу изменяется в противоположную сторону, а произведение момента инерции и угловой скорости является константой.

Другой случай такого плана — результат рассмотрения «рычага». Рычаг — это любой твердый объект, способный к вращению вокруг некоторой фиксированной точки, называемой «точкой опоры» рычага. В качестве практического примера можно рассмотреть деревянную доску, лежащую на «козлах»; доска является рычагом, «козлы» — точкой опоры.

Если точка опоры находится точно под центром тяжести рычага, то рычаг останется сбалансированным, то есть не наклонится ни в ту ни в другую сторону. Поскольку рычаг, как и. любой другой объект, ведет себя так, как будто весь его вес сконцентрирован в центре тяжести, он может тогда удержаться целиком на узком крае точки опоры. Если рычаг обладает однородными геометрическими характеристиками и плотностью, центр тяжести его находится в геометрическом центре, и именно туда следует поместить точку опоры, как в известной детской игре — в качелях.

Если к любой точке на рычаге приложить направленную вниз силу, то эта сила, умноженная на расстояние до точки опоры, даст нам крутящий момент и рычаг начнет вращательное движение в направлении крутящего момента.

Предположим, однако, что к рычагу в тоже самое время, во с другой стороны точки опоры прикладывают другую направленную вниз силу. Если вторая сила равна первой и приложена на таком же расстоянии от точки опоры, то полученные два крутящих момента равны по величине, но не по направлению. Крутящий момент на одной стороне точки опоры имеет тенденцию вызывать вращение по часовой стрелке, а тот, что с другой стороны, имеет тенденцию вызывать вращение против часовой стрелки. Если обозначить один крутящий момент как τ, то другой должен быть равен -τ. Эти два крутящих момента складываются, сумма их равна нулю, и рычаг не двигается. Он остается в положении равновесия.

(С другой стороны, если сила приложена вниз на одной стороне точки опоры и вверх на другой, то оба производят движение в том же самом направлении: оба по часовой стрелке или оба против часовой стрелки. Крутящие моменты в этом случае будут одного и того же знака, и сумма их будет составлять 2τ или –2τ. Такой удвоенный крутящий момент называется «парой», и, естественно, пара моментов может более легко переместить рычаг относительно точки опоры. Такую пару мы используем, когда заводим будильник или открываем штопором бутылку.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x