Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Конечно же существует вероятность того, что галактика и антигалактика могут приблизиться друг к другу. Тогда в результате взаимной аннигиляции выделится количество энергии, во много раз превосходящее выделяемое в обычных условиях. Существуют галактики, испускающие необычно большое количество энергии, что в очередной раз поднимает вопрос существования антивещества в головах физиков-теоретиков.

В 1962 году были обнаружены странные объекты, получившие название «квазизвезды», или квазары. Они испускают излучение, мощность которого равняется излучению 100 галактик, вместе взятых, в то время как их размеры не превосходят 1–10 световых лет в диаметре (диаметр галактики же в среднем составляет 100 000 световых лет).

Однако при попытке объяснить это явление никто еще не использовал термин «антивещество». К антивеществу прибегнут лишь в самом крайнем случае, так как такое объяснение очень трудно проверить.

Глава 14.

ПРОЧИЕ ЧАСТИЦЫ

Нейтрино

В гл. 11 мы говорили о том, что в ходе ядерных реакций масса переходит в энергию согласно формуле Эйнштейна e = тс 2. Это соответствие соблюдается и при полной аннигиляции частицы ее античастицей, и при образовании пары «частица — античастица» из энергии.

Несмотря на то что в большинстве случаев соотношение e = mc 2 выполняется полностью, в случае с радиоактивными излучениями существует одно исключение.

Альфа-излучение закону сохранения энергии подчиняется. Когда материнский атом самопроизвольно распадется на дочернее ядро и альфа-частицу, сумма образовавшихся продуктов отличается от массы исходного ядра. Это различие выражается в кинетической энергии быстрой альфа-частицы. Так как в результате распада ядра одного и того же элемента образуются одни и те же продукты, и разница в массе, и кинетическая энергия должны быть одинаковыми. Другими словами, пучок альфа-частиц должен быть моноэнергетическим, каковым он в данном случае и является.

У некоторых веществ испускаемый пучок альфа-частиц можно условно разделить на две и более группы, каждая из которых будет моноэнергетической, но уровень ее энергии будет отличаться от уровня энергии другой. Объясняется это тем, что материнское ядро может существовать на различных энергетических уровнях. В возбужденном состоянии ядро обладает несколько большей энергией, чем в обычном, и образующиеся при распаде такого ядра альфа-частицы обладают большей кинетической энергией. Каждому энергетическому уровню материнского ядра соответствует определенная группа моноэнергетических альфа-частиц, но соотношение массы и энергии остается неизменным (то есть соблюдается закон сохранения энергии).

Предполагалась, что все вышесказанное справедливо и для элементов, ядра которых распадаются на дочернее ядро и бета-частицу. Казалось вполне закономерным, что такие бета-частицы также образуют моноэнергетический пучок или в крайнем случае небольшую группу моноэнергетических лучей.

Однако в 1900 году Беккерель обнаружил, что разброс значений уровня кинетической энергии у излучаемых бета-частиц гораздо шире. В 1914 году Джеймс Чедвик доказал существование «непрерывного спектра бета-излучения».

Из потери массы была высчитана максимальная энергия бета-частицы, однако лишь у некоторых частиц уровень равнялся максимальному значению. (Ни у одной частицы уровень энергий не превышал максимальный, так как энергия, к сожалению, не образуется из ничего.)

Уровень энергии у бета-частиц был самым разнообразным (в пределах максимального). Некоторые вообще практически не обладали кинетической энергией. Более того, значительная часть энергии вообще куда-то исчезла, и в течение всех 1920-х годов ученые так и не могли обнаружить куда.

Исчезновение энергии так же невозможно, как и ее образование. Хотя некоторые физики, включая Нильса Бора, и готовы были признать закон сохранения энергии недействительным для субатомных частиц, остальные отчаянно искали какое-то другое объяснение.

В 1931 году Вольфганг Паули предложил свое объяснение. Он предположил, что во время образования бета-частицы образуется еще одна бета-частица, которая как раз и несет «недостающую» энергию первой бета-частицы.

В этом случае эта гипотетическая частица должна обладать определенными свойствами. При излучении бета-частицы сохраняется электрический заряд, то есть общий заряд образовавшихся частиц такой же, как и заряд исходных частиц. Соответственно частица Паули должна быть незаряженной. В этом был определенный смысл, так как если частица была бы заряженной, то во время своего движения она бы ионизировала окружающие атомы, то есть ее можно было бы обнаружить, например, в камере Вильсона. Но обнаружить ее не удалось.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x