Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Электрон и протон притягиваются друг к другу, как и любые другие объекты с разноименными электрическими зарядами, но они не аннигилируют. В крайнем случае протон захватывает электрон и тот занимает самый нижний электронный уровень, то есть приближается к протону на минимальное расстояние. (В случае протонно-электронной аннигиляции такого соединения просто бы не существовало.)

Электрон и позитрон, которые могут аннигилировать друг друга, также могут захватывать друг друга на какое-то время без аннигиляции. Такой атом, состоящий из движущихся по орбите друг за другом вокруг общего центра притяжения электрона и позитрона (если рассматривать как обычную частицу, не принимая во внимание проявления волновых свойств), называется позитронием.

Существуют два вида позитрониев: ортопозитроний, частицы которого имеют одноименный спин, и парапозитроний, частицы которого имеют разноименный спин. Ортопозитроний существует в среднем одну десятую долю микросекунды, после чего происходит аннигиляция, а парапозитроний и того меньше — всего одну десятитысячную микросекунды. После аннигиляции ортопозитрония образуется три протона, а после аннигиляции парапозитрония — два. В 1951 году австрийскому физику Мартину Дойчу (1917–2002) удалось обнаружить позитронии по испускаемым ими гамма-лучам.

Антибарион

В теории Дирака нет ничего из того, что можно было бы применить к электрону, но ее нельзя применить и к протону. Если у электрона есть античастица, то античастица должна быть и у протона. Антипротон взаимно аннигилируется с протоном, в результате чего, как и в случае с позитроном и электроном, образуются пары и тройки фотонов.

Однако так как масса протона в 1836 раз превышает массу электрона, а масса антипротона в 1836 раз превышает массу позитрона, энергия, выделяемая в результате аннигиляции протона и антипротона, должна быть в 1836 раз больше энергии, выделяемой при аннигиляции электрона и позитрона. Общий выход энергии составляет 1,02 ∙ 1836, то есть 1872 Мэв, или 1,872 млрд. эв. Как видите, мы в диапазоне миллиардов электрон вольт.

Для обратного процесса, образования протонно-антипротонной пары, требуется 1,872 млрд. эв энергии. В действительности энергии требуется намного больше, так как пара образуется за счет столкновения двух частиц на очень большой скорости, а избыток энергии повышает шансы образования антипротона. По подсчетам физиков, для успешного образования протонно-антипротонной пары требуется 6 млрд. эв энергии.

Такой энергией обладают самые быстрые из космических частиц. Однако такие частицы встречаются крайне редко, поэтому сидеть и ждать их с детектором в надежде, что они тут же появятся, довольно глупо.

По этой причине антипротоны были обнаружены лишь тогда, когда физикам удалось построить ускорители частиц, способные разгонять частицы до миллиардов электронвольт. После установки и настройки детекторов ускоренные частицы можно направлять в цель. В Калифорнийском университете для этих целей был использован синхрофазотрон, называвшийся «Беватрон».

Вылетающие из «Беватрона» быстрые частицы ударялись о медную плиту, где в результате столкновения образовывалось огромное количество частиц. Необходимо было выделить из всех этих обломков антипротоны. Для этой цели осколки подвергали воздействию магнитного поля, в результате чего отфильтровывались отрицательно заряженные частицы. Среди них антипротон является самой тяжелой и самой медленной частицей. Поток осколков направляли на расположенные на расстоянии 12,5 м два сцинтилляционных счетчика. Согласно расчетам, антипротон должен пройти это расстояние за 0,051 миллисекунды,

В конце концов Эмилио Сегре (первооткрывателю технеция, к этому времени эмигрировавшему в США) и американскому физику Оуэну Чемберлену удалось обнаружить такую частицу в 1956 году.

Антипротон, как и ожидалось, является близнецом протона, равным по массе, но с противоположным зарядом. Протон обладает положительным зарядом, а антипротон — отрицательным. Протон и антипротон можно обозначить как, 1p 1и -1p 1, или как p +и p –, или как p и p –.

Протон является стабильной частицей и сам по себе может существовать вечно. Его стабильность не подчиняется законам сохранения. Может ли протон распасться до позитрона с энергией в 0,51 Мэв, а оставшуюся большую часть энергии испустить в виде фотонов? Сохранится ли его заряд?

На практике такого не происходит, поэтому мы вполне можем ввести новый закон сохранения — закон сохранения барионного числа. Согласно этому закону общее число бирионов должно оставаться неизменным в любом случае. Основываясь на изученных субатомных явлениях, физики уверены в справедливости этого закона.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x