Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Тем не менее самое знаменательное открытие в данной области было сделано при попытке исключить излучение, а не обнаружить его. Использующийся для обнаружения проникающего излучения электроскоп с золотыми листками (см. гл. 7) работал слишком уж хорошо. В 1900 году несколько ученых, среди которых стоит отметить Вильсона (изобретателя камеры Вильсона), обнаружили, что электроскоп медленно терял свой заряд, даже когда поблизости не было радиоактивных веществ. Наиболее вероятным объяснением этого явления казалось то, что в почве повсеместно присутствуют небольшие количества радиоактивных веществ, порождающие паразитные излучения.

Однако было обнаружено, что, даже если вывезти, электроскоп далеко в море или, еще лучше, закрыть экраном из металла, непроницаемого для известных излучений и не испускающего проникающих излучений, потеря заряда электроскопом хотя и замедлялась, но не останавливалась.

В конце концов в 1911 году австрийский физик Виктор Гесс (1883–1964) сделал решающий шаг: он поднял электроскоп на несколько километров вверх на воздушном шаре. Воздушная прослойка послужила экраном от слабых излучений земной поверхности. К его удивлению, скорость разряда электроскопа не только не понизилась, но и, наоборот, резко возросла. Последующие запуски шаров с электроскопами на борту подтвердили это, и Гесс заявил, что, какова бы ни была природа нового излучения, оно исходило из космоса, а вовсе не с Земли.

Роберт Милликен (измеривший заряд электрона) сыграл ведущую роль во время самых первых исследований этого нового излучения и в 1925 году предложил назвать их космическими лучами, так как они исходили из космоса.

Проникающая способность космических лучей выше, чем рентгеновских, и Милликен выяснил, что они являются формой электромагнитного излучения, длина волны которого короче, а частота — выше, чем даже у гамма-лучей. Физики предположили, что это излучение является потоком частиц. Так как излучение исходило из космоса, появлялся способ выяснить, является ли оно потоком частиц или же электромагнитным излучением. Если космические лучи являются электромагнитным излучением, то они будут падать равномерно на всю поверхность Земли (в том случае, если они приходят со всех сторон) и электромагнитное поле Земли не окажет на них никакого влияния.

Если же космические лучи являются потоком заряженных частиц, они будут отклоняться магнитными линиями Земли, причем частицы, энергия которых меньше, будут отклоняться сильнее. В этом случае ближе к магнитным полюсам концентрация космических лучей будет усиливаться, а на магнитной экватор они падать практически не будут.

В 1920-х годах американский физик Артур Комптон (1892–1962) занимался изучением этого широтного эффекта. В начале 1930-х годов ему удалось доказать, что широтный эффект действительно существует, а космические лучи являются потоком частиц, а не электромагнитным излучением. Поэтому можно смело говорить о космических частицах.

В 1930 году итальянский физик Бруно Росси высказал предположение, что раз космические лучи являются метельчатыми по своей природе, то магнитное поле должно отклонять их на восток, если космические частицы обладают положительным зарядом, то есть больше космических лучей будет падать с западной стороны, и наоборот, если космические частицы заряжены отрицательно.

Для подтверждения существования этого эффекта недостаточно просто обнаружить появление космической частицы, нужно определить направление, откуда она появилась. Для этого был использован разработанный немецким физиком Вальтером Боте (1891–1957) счетчик совпадений. Такой счетчик состоит из двух и более счетчиков Гейгера, установленных на одной оси. Когда вдоль этой оси движется космическая частица, она проходит сквозь все счетчики. Электрическая цепь построена таким образом, что частица будет зафиксирована и посчитана только тогда, когда она пройдет сквозь все счетчики (прочем скорость быстрой частицы настолько высока, что для прохождения сквозь все счетчики ей требуется одно мгновение). Направляя ось счетчиков в разные стороны, получим «телескоп для космических лучей».

На оси счетчиков также можно поместить камеру Вильсона и настроить электрическую цепь так, чтобы при обнулении счетчиков камера расширялась. Капли расширяющейся камеры Вильсона «поймают» недолго существующие нейтроны. А если к цепи подключить еще и фотокамеру и настроить ее так, чтобы при каждом расширении она автоматически делала снимок, то космическая частица сама себя сфотографирует.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x