Очевидно, что, если найти безопасный способ «приручить» реакцию синтеза и использовать ее на практике, человечество будет обеспечено энергией на многие миллионы лет вперед. И довершает эту картину беззаботного будущего тот факт, что продуктами реакции синтеза водорода–2 являются безопасные и стабильные водород–1, гелий–3 и гелий–4 плюс несколько легко поглощаемых нейтронов.
Единственной загвоздкой на пути к раю является то, что для начала реакции синтеза водород–2 нужно нагреть до 100 000 000 °С. Эта температура намного выше температуры внутри Солнца (15 000 000 °С), но у Солнца есть одно преимущество: водород там находится под очень высоким, недостижимым в земных условиях давлением.
На Земле любой газ, нагретый до такой температуры, просто расширится до ненасыщенного пара и тут же охладится. На Солнце этого не происходит из-за его огромной массы, вызывающей силу притяжения, достаточную для удержания газов даже при 15 000 000 °C.
На Земле столь мощной силы притяжения достичь конечно же невозможно, поэтому для удержания газа нужно использовать какие-то другие методы. Контейнер не подойдет, так как любой газ при контакте со стенками сосуда тут же охладится… или расплавит контейнер. Невозможно одновременно нагревать газ до необходимой для начала синтеза температуры и удерживать его сосудами из твердых веществ.
К счастью, существует и другой метод. С повышением температуры атомы «снимают» свои электроны и газ распадается на заряженные частицы: отрицательно заряженные электроны и положительно заряженные ядра. Вещество, состоящее из электрически заряженных частиц, а не из целых атомов, называется плазмой.
Физика плазмы привлекла интерес ученых в основном из-за возможности управления термоядерным синтезом. Однако сегодня становится ясно, что большая часть Вселенной состоит из плазмы. Плазмой являются, например, звезды. На Земле плазма также встречается: шаровая молния — не что иное, как плазма, на время ставшая стабильной. Плазма присутствует и в искусственных устройствах, например в неоновых лампах.
Состоящей из заряженных частиц плазме с помощью магнитного поля можно придать форму «нематериального» контейнера. Сегодня физики делают попытки создать магнитное поле, способное достаточно долго удерживать плазму в стабильном состоянии, и нагреть ее до необходимой для начала термоядерной реакции температуры. Согласно подсчетам, при использовании газа, плотность которого при нормальной температуре составляет всего лишь 1/ 100плотности атмосферы, оказываемое на магнитное поле давление в критической точке в момент начала термоядерной реакции составит 100 атмосфер.
Требования довольно строги, и ученым пока не удалось добиться успехов. За минувшие десятилетия удалось получить температуру 20 000 000 °С и создать магнитное поле, способное выдержать необходимое давление. К сожалению, одновременно поддерживать нужное давление и температуру удается только в течение одной миллионной доли секунды, а для начала первой искусственно управляемой реакции термоядерного синтеза, согласно подсчетам, необходимо поддерживать температуру и давление в течение хотя бы одной десятой доли секунды.
Насколько известно, на пути к достижению не стоит никаких препятствий, нужно лишь время.
Итак, пока в нашем с вами атомном мире живут лишь электроны, протоны и нейтроны, однако даже с помощью лишь этих частиц мне удалось многое вам объяснить. В начале 1930-х годов эти частицы были единственными известными субатомными частицами. С помощью электронов, протонов и нейтронов очень легко было объяснить устройство Вселенной в целом, и ученые надеялись, что больше никаких субатомных частиц не существует. Однако некоторые теоретики предположили существование и других типов частиц, которые и были обнаружены в бомбардирующем Землю излучении из космоса. Об этих излучениях мы сейчас и поговорим.
В начале XX века физики занимались поисками новых видов излучений. Открытие радиоволн, рентгеновских лучей и разнообразных радиоактивных излучений заставило ученых, так сказать» повысить чувствительность к этому феномену [141] В одном случае чувствительность была слишком уж сильной. В 1903 году уважаемый французский физик Проспер Блондло сообщил о существовании нового типа излучения, возникающего при растяжении металлов. Он и его коллеги сделали массу докладов об этом излучении, и Блондло назвал его «Н-лучами», по названию города Нэнси, где располагался университет, в котором он работал. Несомненно, Блондло действительно считал, что открыл новое излучение, однако Н-лучи оказались всего лишь иллюзией, доклады безосновательными, и карьера фишка была загублена. Этот эпизод является ярким примером того, Что и ученые могут ошибаться, и не всему тому, что «научно доказано», стоит верить.
.
Читать дальше