Слабым местом во взглядах Льюиса и Ленгмюра является то, что ученые рассматривали электроны как неподвижные частицы, занимающие внутри атома строго определенные места. Действительно, на рисунках того времени электроны оболочек L и М располагались по восьми углам куба, а молекулы простейших соединений состояли из нескольких таких кубов, соединенных вместе.
Конечно же такое представление удобно с химической точки зрения, но абсолютно неприемлемо с физической. Ведь если отрицательно заряженный электрон висит над положительно заряженным ядром неподвижно, то он должен просто-напросто упасть на ядро. (Точно так же Земля упала бы на Солнце, если бы не вращалась вокруг него.)
Постепенно физики пришли к выводу, что электрон, чтобы не упасть на ядро, вращается вокруг него с огромной скоростью. В 1904 году японский физик Хантаро Нагаока предположил, в частности, что электроны движутся вокруг ядра так же, как планеты движутся по своим орбитам вокруг Солнца [123] Эта картина атома стала весьма популярной в обществе, может быть, потому, что делала атом похожим на что-то уже известное. Несмотря на то что на смену планетарной модели атома приходили все более и более сложные, она прочно обосновалась в умах далеких от физики людей. В частности, было написано огромное количество научно-фантастических рассказов, где атомы воспринимались как крошечные солнечные системы: ядро являлось солнцем, электроны — планетами, иногда даже населенными человекоподобными существами.
.
Впрочем, все модели атомов, где электроны вращались вокруг ядра, сталкивались с одной и той же проблемой. Вращающийся вокруг ядра электрон постоянно испытывает центростремительное ускорение, а согласно теории Максвелла постоянно ускоряющийся заряд должен постоянно испускать электромагнитное излучение.
Именно такую модель и создал Нагаока. Электрон, двигающийся вокруг ядра, и является этим зарядом и должен испускать излучение определенной частоты (как и в случае с искрами у Герца, см. гл. 2). Если электрон в минуту совершает 500 триллионов оборотов вокруг ядра (а это всего лишь 150 километров в секунду), то частота его излучения будет 500 триллионов Гц, а это в пределах видимой части спектра, ведь свет — это тоже электромагнитное излучение.
Предположение, конечно, красивое, но разрушить его все-таки придется. Если вращающийся электрон будет испускать излучение постоянно, то он будет терять энергию, а единственной энергией, которой обладает электрон, является кинетическая (т. е. энергия движения). Соответственно движение электрона вокруг ядра должно постепенно замедляться, а сам электрон будет по спирали приближаться к ядру, пока не остановится окончательно и не притянется ядром [124] По аналогии вращающаяся вокруг Солнца Земля также должна постоянно испускать «гравитационное излучение». Однако сила притяжения настолько слабее электромагнитной (см. ч. II), что потери энергии в результате гравитационного излучения крайне малы. Пройдут многие триллионы лет, прежде чем Земля потеряет хоть сколь-нибудь заметную часть своей кинетической энергии. Электрон же находится под влиянием силы, во много раз превосходящей гравитацию, и поэтому ядро притянет его крайне быстро.
.
Но раз электроны на ядро не падают, нужно создавать какую-то другую модель. Новая модель должна отражать тот факт, что атомы не только излучают (и поглощают) свет, но излучают и поглощают свет лишь определенной частоты. Для создания модели атома следует изучить взаимосвязи между этими уникальными световыми волнами, а отталкиваться нужно от водорода, поскольку водород излучает волны самого простого и упорядоченного спектра.
Длина волн, образующих самые четкие линии спектра водорода, составляет 656,21 миллимикрона, 486,08 миллимикрона, 434,01 миллимикрона, 396,81 миллимикрона и так далее. Расстояние между линиями уменьшается пошагово, значит, здесь определенно должна быть какая-то закономерность.
В 1885 году немецкий математик Иоганн Якоб Бальмер (1825–1898) вывел простую формулу, по которой можно рассчитать длину этих волн:
λ = 364,56m 2/(m 2– 4), (Уравнение 5.1)
где m может быть любым целым числом начиная с 3. Если m = 3, то λ будет равна 656,21 миллимикрона, т. е. длине первой волны водородного спектра. Если подставлять вместо m числа 4, 5, 6, то λ будет равна длине второй, третьей и четвертой линии водородного спектра. Эти линии получили название серия Бальмера.
Читать дальше