Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Параллелограмм сил Зная значения этих двух скоростей и угла между ними можно - фото 4
Параллелограмм сил

Зная значения этих двух скоростей и угла между ними, можно вычислить значение и направление результирующей скорости даже и без геометрических построений, хотя последние всегда полезны в качестве зрительной помощи. Например, если одна скорость — 3 м/с в одном направлении, а другая — 4 м/с в направлении перпендикулярном (под прямым углом к) первому, то результирующая скорость — 5 м/с, в направлении, которое составляет угол менее чем 37° с большим компонентом и более чем 53° — с меньшим.

Таким же образом данная конкретная скорость может быть разложена на две составляющие скорости. Если мы выразим данную скорость как диагональ параллелограмма, то две из смежных сторон параллелограмма представят собой составляющие скорости. Это может быть проделано бесконечное число раз, так как линия, представляющая скорость или силу, может быть представлена диагональю бесконечного числа параллелограммов. Однако удобно, чтобы скорость была разложена на компоненты, которые находятся под прямыми углами друг к другу. В этом случае параллелограмм превращается в прямоугольник.

Этот метод использования параллелограмма может применяться для сложения или разложения любого количества векторов. Данный метод очень часто используется для расчета сил, и поэтому обычно его называют «параллелограммом сил».

Движение Луны

Теперь позвольте нам вернуться к Луне. Относительно Земли она двигается по эллиптической орбите. Однако эллипс, который она описывает в своем вращении вокруг Земли, очень близок по форме к кругу. Луна путешествует по этой орбите со скоростью, которая близка к постоянной.

Хотя линейная скорость Луны почти постоянна, ее векторная скорость, конечно, — нет. Так как Луна перемещается по кривой, направление ее движения в каждый данный момент времени изменяется, и поэтому ее векторная скорость изменяется тоже. Если мы говорим, что векторная скорость Луны непрерывно изменяется, то, конечно, должны сказать, что она подвергается постоянному ускорению.

Если же мы рассматриваем Луну как перемещающуюся с постоянной скоростью по равномерно круговому пути (что является, по крайней мере приблизительно, истинным), то мы можем сказать, что в каждую последовательную единицу времени направление ее движения изменяется на одну и ту же величину. Поэтому она испытывает постоянное ускорение и, согласно второму закону движения Ньютона, должна быть подчинена воздействию постоянной силы. Поскольку изменение в направлении движения всегда направлено к Земле, то ускорение и соответственно сила тоже должны быть направлены к Земле.

Конечно, если имеется сила, притягивающая Луну к Земле, это может быть та же хорошо известная сила, которая притягивает яблоко к земле. Однако, если это было бы так и Луна испытывала бы постоянное ускорение, направленное к Земле при наличии постоянной силы, почему же она не падает на Землю, как делает яблоко?

Чтобы понять, почему этого не происходит, мы должны разложить движение Луны на две составляющие движения, находящиеся под прямым углом друг к другу. Одна из составляющих направлена как стрелка, указывающая на Землю, по радиусу круговой орбиты Луны. Она представляет собой движение в ответ на силу, притягивающую Луну к Земле. Другая составляющая направлена под прямым углом к первой и, таким образом, представляет собой касательную к кругу орбиты Луны. И Луна бы двигалась по касательному движению, если бы не имелось никакой силы, притягивающей ее к Земле. Фактическое же движение лежит между этими двумя составляющими. Луна, другими словами, всегда падает на Землю, но в то же самое время также «отступает в сторону».

В некотором смысле это «отступление» означает, что поверхность Земли отходит от Луны с такой же скоростью, как Луна приближается к ней, падая. Таким образом, расстояние между Землей и Луной остается неизменным. Чтобы было более понятно, представим себе снаряд, выстреленный горизонтально с вершины горы на земле, и развивающий все большую и большую скорость. Чем больше скорость, тем дальше перемещается снаряд, прежде чем удариться о землю. Чем дальше он перемещается, тем дальше от него сферическая земная поверхность, таким образом увеличивается перемещение снаряда. Ну и наконец, если снаряд выстрелен вперед с достаточной скоростью, высота его падения становится равной величине кривизны земной поверхности, и снаряд «остается на орбите». Именно так на орбиту Земли выводят искусственные спутники, и именно поэтому Луна не падает на Землю, а остается на орбите.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x