Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Критическая температура для кислорода составляет 154 °K (или 119 °С), только после того как кислород опустится ниже этой температуры, станет возможным его сжижение. Межмолекулярные силы в водороде еще более слабые, чем в кислороде, поэтому его следует охладить до температуры 33 °K (или –240 °С), прежде чем кинетическая энергия молекул станет настолько низкой, чтобы быть нейтрализованной этими силами. Рекорд в этом отношении держит гелий (выделенный на Земле только в 1898 году). Гелий среди всех реальных газов наиболее близко стоит по отношению к идеальному газу. Его критическая температура -5 °К (или –268 °С).

С другой стороны, имеются вещества с настолько большими межмолекулярными силами, что они остаются жидкостями при комнатной температуре и даже под атмосферным давлением. (Эти межмолекулярные силы — больше, чем простые силы Ван-дер-Ваальса, и в этой книге мы их обсуждать не будем.) Вода — наиболее общеизвестный пример жидкости, существующей при обычной температуре и давлении. При температуре 373 °К (100 °С) и давлении в 1 атмосферу силы межмолекулярного притяжения благодаря увеличению кинетической энергии преодолеваются, и вода превращается в свою газообразную форму: пар, или водяной пар [69] Газ, который существует только при повышенной температуре, обычно называют «паром». . Однако если мы увеличим давление, то и при температуре, равной или выше 100 °С, вода может сохранять свою жидкую форму. Это означает, что точка кипения повышается с увеличением давления, факт, которым регулярно пользуются в кастрюлях-скороварках. Критическая температура воды — 647 °К (или 374 °С), только при температуре выше этой жидкая вода не может существовать независимо от других условий.

Даже в жидкостях силы притяжения между молекулами не настолько велики, чтобы предотвратить скольжение и смещение отдельных молекул относительно друг друга. Однако если мы будем еще далее понижать температуру, то достигнем точки, в которой энергии отдельных молекул недостаточно велики, чтобы дать им даже такую ограниченную свободу. Межмолекулярные силы становятся достаточно сильными, чтобы удержать молекулы твердо на одном месте. Они могут вибрировать вперед и назад, но среднее их положение остается фиксированным, и вещество превращается в твердое тело. Если мы будем поднимать температуру твердого тела, то эти колебания станут более энергичными, и при некоторой температуре (в зависимости от величины вовлеченных межмолекулярных сил) они станут настолько велики, что будут противостоять этим силам вплоть до разрешения молекулам скользить относительно друг друга; тогда твердое тело расплавится или превратится в жидкость. Однако на эту «точку плавления» давление воздействует весьма незначительно.

Межмолекулярные силы в водороде настолько слабы, что твердый водород плавится при температуре всего лишь 14 °К (или –259 °С), а жидкий водород кипит (при атмосферном давлении) при температуре, равной всего лишь 20 °К (или –253 °С). Однако гелий показывает даже еще более впечатляющие результаты. Его частицы состоят из отдельных атомов, а межатомные силы настолько слабы, что даже одной единицы кинетической энергии все еще достаточно, чтобы держать его в жидком состоянии при температуре, равной абсолютному нулю. Твердый гелий не может существовать независимо от того, насколько низка температура; для его появления необходимо увеличение давления — оно должно быть большим, чем атмосферное. Точка кипения гелия под давлением, равным одной атмосфере, находится на 4 °К (или –269 °С).

С другой стороны, некоторые вещества обладают межмолекулярными или межатомными силами настолько сильными, что они остаются твердыми телами при температуре, значительно превышающей обычную. Металлический вольфрам не плавится, пока не достигнет температуры 3370 °С, и не кипит при атмосферном давлении, пока не достигнет температуры 5900 °С.

Удельная теплоемкость

Пока что при обсуждении теплоты мы акцентировались на понятии «температура»; однако следует избегать путаницы между двумя разными терминами. Термины «теплота» и «температура» ни в коем случае не идентичны. Конечно, легко предположить, что если один образец воды имеет более высокую температуру, чем другой, то он более горячий, а потому обладает и большим количеством теплоты. Но это последнее утверждение, однако, не обязательно является истинным.

Наперсток, наполненный водой, при температуре 90 °C намного более горячий, чем ванна полная воды при температуре 50 °С, но ванна с водой имеет гораздо большее количество теплоты. Если оставить их стоять при комнатной температуре, то наперсток, полный воды, охладится до комнатной температуры за время, в течение которого ванна с водой едва ли охладится вообще. Наперсток с водой теряет свою полную теплоту быстрее, в частности, потому, что обладает гораздо меньшим количеством того, что ему следует терять.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x