Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Луна, с ее намного меньшей второй космической скоростью, не способна даже удержать ни кислород, ни азот, если бы они когда-либо там существовали; фактически на Луне вообще не существует никакой атмосферы. Юпитер и другие внешние планеты, на которых вторая космическая скорость намного превышает земную, а температура поверхности — намного ниже, чем у Земли или Луны, способны очень легко удержать даже водород. Поэтому эти планеты имеют огромные, заполненные водородом атмосферы.

Реальные газы

В течение трех столетий после открытия закон Бойля принимался учеными как весьма полезный. Другое дело, что в течение двух с половиной из этих трех столетий данный закон (ошибочно) считался точным. Закон Бойля при всей его полезности является только аппроксимацией фактической ситуации, что впервые ясно дал понять французский физик Генри Виктор Регно (1810–1878), который в 1850-х годах измерил точные объемы различных газов под различными давлениями и нашел, что произведение этих двух (PV) не всегда является постоянной величиной, несмотря на то что температура тщательно поддерживается на одном уровне. При давлении в 1000 атмосфер это произведение может быть в два раза больше, чем при давлении в 1 атмосферу. Даже когда он работал с давлениями, которые были только не намного выше, чем расчетное в 1 атмосферу, он часто находил отклонения в произведении, достигающие пяти процентов. Кроме того, от газа к газу имеются дополнительные различия. При давлении, не превышающем 100 атмосфер, водород, азот и кислород отклоняются от закона Бойля достаточно незначительно, в то время как двуокись углерода отклоняется намного.

Однако закон Бойля может быть получен из кинетической теории газов. Что же тогда? Является ли кинетическая теория газа неверной? Нет, не обязательно. Однако при получении закона Бойля из кинетической теории газов мы сделали некоторые упрощения, два из которых не совсем справедливы, при рассмотрении реальных газов. Например, мы приняли, что между молекулами газов не существует никаких взаимных сил притяжения, поэтому движение одной молекулы может рассматриваться полностью независимым от других. Это не совсем правильно, так как среди молекул газов есть очень слабые силы притяжения.

Другим упрощением было то, что молекулы газа являются чрезвычайно маленькими по сравнению с вакуумом, который их разделяет, настолько маленькими, что их объем может быть принят равным нулю. И снова это не совсем правильно. Объем молекул действительно очень маленький, но он не равен нулю.

Теперь предположим, что мы не принимаем упрощения, но полагаем вместо этого, что в тот момент, когда молекула собирается удариться о стенку сосуда, к ней приложено некое суммарное, направленное в противоположную от стенки сторону напряжение от воздействия всех слабых межмолекулярных сил, приложенных к молекуле, которая собирается сталкиваться, со стороны всех остальных молекул. (Это своего рода газообразное поверхностное натяжение, подобное уже знакомому нам жидкостному поверхностному натяжению, которое описано ранее.) Из-за этого «обратного» натяжения молекула не будет ударять в поверхность с полной силой, и ее вклад в общее давление меньше, чем можно было бы ожидать, согласно кинетической теории газа, в том случае, если бы никаких межмолекулярных сил не существовало. Чтобы привести давление каждой индивидуальной молекулы к идеальному (без межмолекулярных сил), мы должны добавить маленькое дополнительное количество давления (P x). Давление идеального газа в таком случае (P i) будет равно фактически измеренному давлению плюс это дополнительное количество (P + P x).

Чем большее количество молекул в газе находится в непосредственной близости к сталкивающейся молекуле (более отдаленные молекулы вносят такой ничтожный вклад в силу притяжения, что мы можем их игнорировать), тем больше величина обратного напряжения; чем больше фактическое давление (P) отстает по величине от идеального (P i), тем больше значение P x, которое мы должны добавить к P в рассматриваемом случае столкновения молекулы. Количество же близлежащих молекул пропорционально плотности газа (D).

Но давление зависит от общего количества молекул, ударяющихся о стенки сосуда в данный момент времени. Значение P x также зависит от этой величины. Но эта величина, в свою очередь, зависит от плотности газа. Таким образом, P x зависит от плотности газа сначала в связи с каждой отдельной сталкивающейся молекулой, а затем в связи с числом молекул, сталкивающихся в единицу времени. Полное значение P x зависит от размера сталкивающейся молекулы, умноженного на число молекул, сталкивающихся в единицу времени, или на величину пропорциональную плотности, умноженную на коэффициент пропорциональности к плотности. Тогда полное значение — пропорционально квадрату плотности — D 2. Если в этом случае мы используем для обозначения коэффициента пропорциональности величину а, то можем сказать, что P x= aD 2.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x