Хотя это может быть не сразу очевидно, но мы подошли к интригующему моменту. Второй закон термодинамики, кажется, дал нам стрелу времени, которая появляется, когда физические системы имеют большое число составляющих . Если вы посмотрите плёнку о двух молекулах углекислого газа, которые разместились в малом объёме (с подсветкой траекторий, показывающей движения каждой из них), вам будет трудно сказать, прокручивалась ли плёнка в прямом или в обратном направлении. Две молекулы будут летать там и сям, временами собираясь вместе, временами удаляясь, но они не будут представлять макроскопическое поведение, различающее одно направление во времени от обратного. Однако если вы увидите плёнку, на которой 10 24молекул углекислого газа собрались вместе в малом объёме (скажем, в виде маленького плотного облака молекул), вы легко определите, прокручивалась ли плёнка в прямом или обратном направлении. Наиболее вероятно, что прямое направление времени — это когда молекулы газа становятся более и более однородно распределёнными, достигая всё большей и большей энтропии . Если вместо этого плёнка показывает однородный рассеянный газ молекул, который стягивается вместе в тесную группу, вы немедленно поймёте, что смотрите плёнку в обратном направлении.
По существу, те же рассуждения годятся для всех явлений, с которыми мы сталкиваемся в повседневной жизни — для явлений, которые имеют большое число составляющих, стрела времени указывает в направлении роста энтропии. Если вы смотрите фильм о стакане воды со льдом на столе, вы можете определить, какое направление является прямым во времени, отметив, что лёд тает, — молекулы H 2O льда распределяются по всему стакану, следовательно, достигают более высокой энтропии. Если вы смотрите фильм о разбивающемся яйце, вы можете определить, какое направление является прямым во времени, проверив, что составляющие яйца становятся всё более и более разупорядоченными, — что яйцо скорее разбивается, чем собирается обратно, следовательно, также стремясь к более высокой энтропии.
Как вы видите, понятие энтропии даёт точную версию заключения «простота против сложности», которую мы нашли раньше. Страницам романа «Война и мир» легко нарушить правильный порядок, так как имеется очень много неупорядоченных расположений. Для страниц трудно попасть в совершенный порядок, поскольку сотни страниц должны будут двигаться очень специальным способом, чтобы упасть в уникальной последовательности, которую задумывал Л. Н. Толстой. Яйцу легко разбиться, так как существует много способов разбиться. Яйцу трудно собраться воедино, поскольку огромное число разбрызганных составляющих должны будут двигаться в совершенной координации, чтобы воспроизвести уникальный результат в виде неповреждённого яйца, покоящегося на столе. Для тел с большим числом составляющих легко переходить от низкой энтропии к высокой — от порядка к беспорядку, — что всегда и происходит. Двигаться от высокой энтропии к низкой — от беспорядка к порядку — труднее, поэтому такое происходит в лучшем случае редко.
Отметим также, что энтропийная стрела не является совершенно жёсткой; не утверждается, что это определение направления времени надёжно на все 100%. Напротив, этот подход имеет достаточно гибкости, чтобы позволить тем или иным процессам иногда идти в обратном направлении. Поскольку второй закон декларирует, что рост энтропии является только статистически вероятным, но не непременным свойством природы, он допускает с малой вероятностью, что страницы могут выпасть в правильном числовом порядке, что молекулы газа могут влезть обратно в бутылку, а яйца могут восстанавливаться. Используя математику энтропии, второй закон в точности выражает, насколько статистически невероятны такие события (вспомните гигантское число в предыдущем разделе, показывающее, насколько более вероятно, что страницы романа «Война и мир» лягут в беспорядке), но он признаёт, что они могут происходить.
Это выглядит довольно убедительно. Статистические и вероятностные аргументы дают нам второй закон термодинамики. В свою очередь, второй закон обеспечивает нас интуитивным различием между тем, что мы называем прошлым, и тем, что мы называем будущим. Он даёт нам практическое объяснение, почему явления повседневной жизни, которые обычно состоят из огромного числа составляющих, начинаются так , а заканчиваются эдак , в то время как мы никогда не видим их начинающимися эдак , а заканчивающимися так . Но по прошествии многих лет — и благодаря огромному вкладу таких физиков, как лорд Кельвин, Джозеф Лошмидт, Анри Пуанкаре, С. X. Бербери, Эрнст Цермело и Вильярд Гиббс, — Людвиг Больцман пришёл к пониманию, что история стрелы времени ещё более удивительна. Больцман понял, что, хотя энтропия и проясняет важные аспекты головоломки, она не отвечает на вопрос, почему прошлое и будущее кажутся столь различными. Вместо этого энтропия переопределяет сам вопрос столь существенным способом, что это ведёт к неожиданным заключениям.
Читать дальше