А сколько энтропии содержит чёрная дыра заданного размера? Вот где начинается самое интересное. Начнём свои рассуждения с чего-то наглядного, наподобие воздуха в тапперуэровском контейнере [102]. Если вы соедините два таких контейнера, удвоив их общий объём и количество содержащихся в них молекул воздуха, то можно подумать, что тем самым вы удвоите и энтропию. Точные расчёты подтверждают это предположение {209} и тем самым показывают, что при прочих равных условиях (неизменная температура, плотность и т. д.) энтропия известных нам физических систем пропорциональна их объёму. Следующим шагом можно предположить, что энтропия и менее знакомых нам систем, таких как чёрные дыры, тоже пропорциональна их объёму.
Но в 1970-х гг. Якоб Бекенштейн и Стивен Хокинг обнаружили, что это не так. Их математический анализ показал, что энтропия чёрной дыры пропорциональна не её объёму, а площади её горизонта событий — грубо говоря, площади её поверхности. Это ответ очень отличается от того, что мы ожидали. Если удвоить радиус чёрной дыры, то её объём увеличится в 8 раз (2 3), тогда как площадь её поверхности возрастёт только в 4 раза (2 2); если в 100 раз увеличить радиус чёрной дыры, то её объём увеличится в миллион раз (100 3), тогда как площадь её поверхности возрастёт только в десять тысяч раз (100 2). У чёрных дыр гораздо больше объёма, чем поверхности. {210} Таким образом, хотя чёрные дыры содержат предельно возможное количество энтропии, но Бекенштейн и Хокинг показали, что это количество меньше, чем мы могли бы по наивности полагать. Пропорциональность энтропии площади поверхности является не просто любопытным различием между чёрными дырами и тапперуэровскими контейнерами, о которых мы ранее упомянули и быстро пошли дальше. Мы видели, что чёрные дыры устанавливают предел количеству энтропии, которое в принципе может быть вмещено в заданную область пространства: возьмите чёрную дыру точно такого же размера и найдите её энтропию — это и будет абсолютным пределом энтропии, которую может содержать заданная область пространства. И поскольку, согласно работам Бекенштейна и Хокинга, эта предельная энтропия пропорциональна площади поверхности чёрной дыры, которая занимала бы заданную область, значит, максимальное количество энтропии, которое может содержаться в заданной области пространства, пропорционально площади её поверхности. {211}
Легко выявить причину расхождения этого вывода с тем, что мы нашли, рассуждая о воздухе в тапперуэровском контейнере (когда мы установили, что энтропия пропорциональна объёму контейнера, а не площади его поверхности): поскольку мы предположили, что воздух однородно распределяется внутри контейнера, то тем самым мы игнорировали гравитацию; ведь когда гравитация существенна, происходит сгущение. Игнорировать гравитацию можно в случае низкой плотности частиц, но при большой энтропии плотность высока, так что гравитация существенна, и перестаёт быть справедливым рассуждение, применённое к тапперуэровскому контейнеру. Экстремальные условия требуют учёта гравитации, что и приводит к тому, что максимально возможное количество энтропии, содержащейся в заданной области пространства, пропорционально площади её поверхности, а не её объёму.
Хорошо, но почему это должно нас интересовать? На это есть две причины.
Во-первых, существование предела энтропии даёт ещё одно указание на то, что ультрамикроскопическое пространство имеет атомизированную структуру. Согласно Бекенштейну и Хокингу, если вообразить, что на плоскости горизонта событий чёрной дыры расчерчена шахматная доска с клетками размера планковской длины (так что каждая «планковская клетка» имеет площадь 10 −66см 2), то энтропия чёрной дыры равна количеству таких клеток, уместившихся на горизонте событий. {212} Отсюда неизбежен вывод: планковская клетка является минимальным, фундаментальным элементом пространства, и каждая такая клетка несёт минимальный, единичный элемент энтропии. Это значит, что ничего, даже в принципе, не может происходить внутри планковской клетки, поскольку любое перемещение является потенциальным источником беспорядка, для создания которого требуется более чем один элемент энтропии в пределах планковской клетки. Таким образом, с совсем другой точки зрения мы снова пришли к представлению о существовании сущностного пространственного элемента. {213}
Во-вторых, верхний предел энтропии в заданной области пространства является для физика критической, почти священной величиной. Чтобы понять причину этого, вообразите, что вы помогаете психиатру, и ваша работа состоит в том, чтобы детально записывать всё, что происходит в группе гиперактивных детей. Каждое утро вы молитесь, чтобы дети как можно спокойнее себя вели, поскольку чем больший бедлам они устраивают, тем труднее ваша работа. Причина очень проста, но стоит явно сказать: чем более беспорядочно ведут себя дети, тем за большим количеством вещей вам требуется следить. Вселенная бросает физику во многом тот же вызов. Фундаментальная физическая теория должна описывать всё, что происходит — или могло было произойти, даже в принципе, — в заданной области пространства. И, как и в случае с детьми, чем больший беспорядок может содержать область пространства — даже в принципе — тем больше должна уметь отслеживать теория. Таким образом, максимальная энтропия в области пространства может служить своеобразной «лакмусовой бумажкой»: физики полагают, что по-настоящему фундаментальная теория — это та, которая полностью согласуется с максимальной энтропией в любой заданной области пространства. Теория должна соответствовать природе с такой точностью, чтобы быть в состоянии точно отследить максимально возможный беспорядок в любой области пространства, не больше и не меньше.
Читать дальше