Рисунок 63. Модель генерации мощности и энергии в зависимости от времени. Введенная реактивность 1,2 β. Время жизни нейтронов 10 -8, 10 -6и 10 -4с. Нижний график показывает зависимость реактивности от времени.
Рисунок 64. Модель генерации мощности в зависимости от времени. Введенная реактивность 1,0 β. Время жизни нейтронов 10 -8, 10 -6и 10 -4с. Нижний график показывает зависимость реактивности от времени.
Некоторые из результатов, показанных на рисунках 63 и 64, можно получить аналитически. Для достаточно больших шагов увеличения реактивности выше критичности на мгновенных нейтронах запаздывающими нейтронами можно пренебречь, и кинетические уравнения можно проинтегрировать и получить полный выход при резком увеличении мощности [7] Подобный же результат можно получить для области критичности на запаздывающих нейтронах, но неадиабатическое поведение искажает результат.
.
dE/dt = 2Δk p/ b, (2)
где Δk p— это шаг приращения по отношению к мгновенной критичности.
Полуширина пика описывается формулой
t 1/2= 3,52 l / Δk p, (3)
где l — время жизни нейтронов, а максимальная мощность дается формулой
(4)
Данные, показанные на рисунках 63 и 64, получены в результате интенсивных исследований на экспериментальных системах: реакторах «Годива», KEWB 6и SPERT и в экспериментах CRAC 5.
Реакторы «Годива I» и «Годива II» представляли собой почти целиком твердые критические металлические сборки из урана (93 % 235U), используемые для установок по облучению. При нескольких центах выше мгновенной критичности контролируемая мгновенная вспышка мощности дала отличную экспериментальную картину, дополняющую кривые на рисунках 63 и 64. Из-за теплового расширения возникает мгновенный отрицательный температурный коэффициент реактивности, около 4,3 X 10 3β/°C (в зависимости от модели), который непосредственно связан с накоплением энергии деления. Изменение во времени происходит столь быстро, что никакое тепло из системы не теряется. Когда шаг изменения реактивности увеличивается до 4 центов или до 5 центов выше критичности на мгновенных нейтронах, появляются новые эффекты. Мощность растет до такой высокой величины, что тепловое расширение отстает от роста накопления энергии, и простое соотношение между E и Δk pв уравнении (2) перестает быть справедливым. При еще более высоких шагах изменения реактивности выделение энергии становится пропорциональным квадрату, а затем кубу исходного превышения реактивности. Структурные разрушения от ударных волн начинаются при 10 центах или 11 центах, определяя, таким образом, предел для плановых повторяющихся вспышек.
Переходное поведение систем растворов изучалось на двух реакторах KEWB 6. Активная зона KEWB-A представляла собой сферу из нержавеющей стали объемом 13,6 л, содержащую 11,5 л раствора высокообогащенного UO 2SO 4, отражателем был толстый графит. Этот реактор позволял исследовать переходные режимы в системах растворов, в течение которых период достигал 2 миллисекунд. Активная зона KEWB-B была сконструирована специально так, чтобы получить в этих экспериментах период в 1 мс. В нем активная зона была цилиндрической и во время экспериментов по изучению переходных процессов (вплоть до приблизительно 5,2 β выше критичности на мгновенных нейтронах) содержала 18 л раствора UO 2SO 4.
В системах KEWB 6в широком диапазоне вспышек мощности преобладающими были, по-видимому, два механизма гашения. Первый из них — это рост температуры нейтронов и тепловое расширение при росте температуры активной зоны, в результате чего мгновенный температурный коэффициент становился равным -2 цента/°C при 30 °C. Этот эффект достаточен для того, чтобы объяснить наблюдаемое энерговыделение вблизи критичности на мгновенных нейтронах, но не он преобладает в экспериментах с большим удалением от нее. Второй механизм гашения — образование пузырьков 104,105. Имеющиеся данные свидетельствуют в пользу того, что во время пика процессом деления создается пустой объем, состоящий из множества очень маленьких пузырьков (микропузырьков) с внутренним давлением от 10 до 1000 атмосфер. Пузырьки позднее объединяются в большие пузыри и покидают систему, приводя к наблюдаемому коэффициенту образования газа около 4,4 л/МДж.
Читать дальше