В дополнение к пониманию, полученному в результате изучения технологических аварий и разгонов в реакторах и в критических сборках, происходивших с участием растворов, большое количество информации доставляет серия экспериментов по изучению контролируемых всплесков мощности в растворах. Представляют интерес проведенные в США серии экспериментов KEWB 6, 89, 90, 91(кинетические эксперименты в кипящих реакторах), в то время как эксперименты CRAC 5, проводимые во Франции Отделом изучения критичности Комиссариата по атомной энергии (Service d'Etudes de Criticite of the Commissariat a l'Energie Atomique), непосредственно используются для оценок последствий аварий. Эти программы, в которых используются растворы высокообогащенного урана, дополняются серией измерений, проведенных в Лос-Аламосской национальной лаборатории с помощью сборки SHEBA 92. Эта сборка заполнена раствором обогащенного до 5 % урана, который дает информацию о мощности дозы при всплесках мощности в системах с низким обогащением урана. Анализ результатов экспериментов KEWB 6и CRAC 5привел к разработке относительно простых компьютерных программ, которые хорошо описывают переходное поведение на ранней стадии и в качестве механизмов гашения принимают тепловое расширение и образование газа вследствие радиолиза.
Параметры СЦР в твердой активной зоне с замедлителем изучались по экспериментальным программам SPERT 93, 94, 95и TRIGA 96, 97, в то время как очень быстрая кинетика переходного процесса в простых металлических системах без замедлителя хорошо понята в результате исследований на критической сборке «Годива» и на подобных реакторах с быстрыми всплесками мощности.
Механизмы гашения, ясно проявившиеся в вышеуказанных экспериментальных исследованиях и прекратившие многие аварийные выбросы мощности, включают в себя тепловое расширение, кипение, эффект Доплера 98 на 238U и образование пузырьков радиолитического газа. Они перечислены здесь не в порядке их важности, и не все они независимы. Вдобавок, в некоторых ситуациях вклад в гашение или прекращение всплеска мощности вносит более чем один механизм; во многих случаях появляются также дополнительные механизмы гашения, когда плотность энергии или температура достигают некоторого порогового значения. Эта проблема имеет разнообразные и многочисленные ответвления, но самый простой и наиболее общий из применимых механизмов используется в энергетической модели 99,100,101, в которой изменение реактивности пропорционально выделяемой энергии деления.
Для специального случая увеличения реактивности на величину Δk 0можно написать
Δk(t) = Δk 0— bE(t), (1)
где E(t) есть энергия деления, выделяемая к моменту времени t, а b — постоянная, характеризующая систему. В таком предположении была составлена программа численного решения кинетических уравнений реактора с использованием цифровых вычислительных машин. Такие программы существуют во многих лабораториях; результаты, приведенные здесь, взяты из программы RTS Лос-Аламосской национальной лаборатории 102,103. Рисунок 63 иллюстрирует серию результатов расчетов для гипотетических систем, в которых прирост Δk составляет 1,20 в относительно критичности на запаздывающих нейтронах, значение b постоянно, а время жизни нейтронов l изменяется от 10 -8до 10 -4секунд. Кривые мощности и реактивности в случае короткоживущих нейтронов характерны для мгновенных резких всплесков мощности в реакторах на быстрых нейтронах. Очень резкие рост и падение мощности называется пиком мощности, а относительно постоянная мощность, следующая за пиком, называется плато. Во время пика реактивность изменяется на 2 Δk 0, то есть она отражает почти мгновенную критичность. Характеристики таких пиков определяются почти полностью мгновенными нейтронами. Кривые для l = 10 -4(они моделируют раствор или реактор с замедлителем) не обнаруживают отражения почти мгновенной критичности, и не имеется никакого четко определенного плато вслед за пиком. Масштаб времени порядка времени распада более короткого предшественника запаздывающих нейтронов; влиянием этих нейтронов нельзя пренебречь.
Рисунок 64 иллюстрирует аналогичные данные при увеличении реактивности на шаг, равный 1,0 β. Развитие во времени реактивности и мощности в этом случае совершенно иное и типично для резких выбросов мощности в критической области с запаздывающими нейтронами. Шкала времени более протяженная, допускающая возможность использования механических приборов для выключения переходного режима, пики выбросов мощности шире, и реактивность теперь пытается отразить почти запаздывающую критичность. Следует заметить, что подразумеваемое предположение об отсутствии в системе тепловых потерь не может быть реализовано на практике. Любая такая потеря энергии имела бы результатом большие значения мощности, чем те, что показаны на рисунке.
Читать дальше