Часовой, охранявший здание, но не участвовавший в экспериментах, получил дозу радиации, составившую около 50 бэр. Никелевая оболочка, которой была покрыта плутониевая активная зона, не была повреждена.
Во втором случае нескольким специалистам демонстрировался способ монтажа металлических критических сборок. Система состояла из такой же плутониевой сферы, но на сей раз с бериллиевым отражателем. Последней операцией являлась установка верхней полусферической бериллиевой оболочки. Ее медленно опускали на место, так что один край касался нижней бериллиевой полусферы, а другой, диаметрально противоположный, конец удерживался в приподнятом состоянии отверткой (рис. 42). Человек, проводивший демонстрацию, придерживал верхнюю полусферу, просунув большой палец левой руки в отверстие в верхней ее части.
Энерговыход в результате всплеска мощности составил 3 х 10 15делений. Механического разрушения никелевой оболочки и в этом случае не наблюдалось. Восемь человек, находившихся в комнате, получили дозы, составившие 2100, 360, 250, 160, 110, 65, 47 и 37 бэр. Человек, проводивший демонстрацию, умер через 9 дней.
На рисунке 43 показаны результаты расчета мощности энерговыделения в сфере как функции времени для нескольких значений избыточной реактивности. На рисунке 44 для тех же значений избыточной реактивности приведены соответствующие значения интегрального энерговыделения в зависимости от времени. Эти данные можно применять к обеим описываемым авариям, так как разный материал отражателя очень мало сказывается на кинетике цепной реакции. Если в случае первой аварии избыточная реактивность не превышала 15 центов, то вся конструкция должна была удерживаться в собранном виде в течение нескольких секунд, что вполне соответствует реальной картине событий. Во втором случае экспериментатор был лучше подготовлен к тому, чтобы быстро разобрать конструкцию. Считается, что это удалось сделать за доли секунды, возможно, меньше чем за полсекунды. Тогда известные параметры процесса можно объяснить, если положить избыточную реактивность равной 10 центам.
Рисунок 41. Сфера из плутония с частичным отражателем из карбида вольфрама.
Р исунок 42. Конфигурация отражателя из бериллиевых оболочек до аварии, произошедшей 21 мая 1945 года.
Рисунок 43. Расчетные значения мощности энерговыделения для плутониевой сферы массой 6,2 кг.
Рисунок 44. Расчетные значения энерговыхода для плутониевой сферы массой 6,2 кг.
3. Лос-Аламосская национальная лаборатория, 1 февраля 1951 г. 38, 42, 44, 45
Эксперимент по взаимодействию; две большие массы урана (93,5 %) в воде; многократные всплески мощности; незначительные дозы облучения.
В 1949 году была создана установка для изучения размножающих свойств сборки из металла в воде. Установка имела две системы аварийной защиты. Первая, с быстрым срабатыванием, состояла из пневматического цилиндра, поднимавшего из воды изделие; вторая, более медленная, опустошала бак. Впоследствии установка была оборудована подвижной консолью, предназначенной для определения критических расстояний между двумя взаимодействующими частями, и была добавлена дополнительная система аварийной защиты в виде падающей кадмиевой пластины (рис. 45).
К всплеску мощности привел эксперимент по измерению критического расстояния между двумя частями сборки из обогащенного урана (с обогащением 93,5 %), помещенными в воду. Одна часть представляла собой сплошной цилиндр массой 24,4 кг, а вторая — полый цилиндр массой 38,5 кг. Наружная поверхность сплошного цилиндра и внутренняя поверхность полого цилиндра были облицованы листовым кадмием с толщиной слоя, равной 2,54 мм. Полый цилиндр был заполнен парафином.
По завершении эксперимента по определению критического расстояния (при коэффициенте умножения, равном 65,5) сборка была заглушена. Начался слив воды, была сброшена кадмиевая пластина, происходил подъем сплошного цилиндра (слева на рисунке 45). В этот момент произошел всплеск мощности (позже было определено, что выход составил 10 17делений), о чем свидетельствовали захлебнувшиеся нейтронные счетчики и появление облака пара над поверхностью воды, которое было видно на телеэкране.
Читать дальше