Пик (мгновенный всплеск мощности):начальный импульс мощности при мгновенном резком увеличении мощности, ограниченный механизмом самогашения. См. мгновенное резкое увеличение мощности.
Мгновенное резкое увеличение мощности:резкое выделение ядерной энергии в результате мгновенной критической конфигурации делящегося материала. Обычно за резким пиком мощности следует плато, которое может прерываться меньшими пиками.
Из данных, полученных в экспериментах по резкому увеличению мощности в растворах, таких, как многие из экспериментов CRAC 5 и SILENE 4, ясно, что имеется плавный переход от резких выбросов мощности, при которых максимальная реактивность не достигает мгновенной критической реактивности, к таким выбросам мощности, при которых она слегка превышает мгновенную критическую реактивность. Не существует значительного различия между изменениями мощности во времени при двух резких выбросах мощности, один из которых происходит при максимальной реактивности 0,90 р, а другой — при максимальной реактивности 1,10 р. В обоих случаях обнаруживается начальный пик, за которым с интервалом приблизительно от 10 до 20 секунд следуют повторяющиеся пики меньшей энергии, в конце концов переходящие в квазиплато. Только тогда, когда максимальная реактивность достигает приблизительно 0,50 р или меньшего значения, традиционный пик не присутствует.
Другим результатом экспериментов CRAC 5 и SILENE 4, который можно сопоставить с перечисленными в таблице 10 значениями выхода числа делений при авариях, является удельный выход первого выброса мощности, т. е. пика мощности. В экспериментах, в которых максимальная реактивность достигала приблизительно 0,50 р или больших значений, удельный выход делений в пике составлял всегда примерно 1,0 X 10 15делений на литр, за исключением очень быстрых выбросов мощности, таких, в которых обратный период был много больше, чем 100 с-1. Для этих очень быстрых выбросов мощности были измерены значения удельного выхода числа делений вплоть до нескольких единиц на 1015 делений на литр. Значения выхода числа делений в пике при авариях, которые приводятся в таблице 10, согласуются со значениями удельного выхода, полученными в экспериментах CRAC 5 и SILENE 4, в которых ни одно значение не превышает нескольких единиц на 10 15делений на литр. Однако, описаны три случая, когда значения выхода в пике (аварии 4, 6 и 8) выпадают из этого правила и значительно ниже 10 15делений на литр. Это либо указывает на медленный выброс мощности, в котором пик в классическом смысле отсутствует, либо оценка величины выхода просто некорректна. Поскольку нет никакого неопровержимого свидетельства в пользу той или другой интерпретации, эти элементы таблицы были оставлены такими, какими они были представлены в предыдущих редакциях.
Почти в половине случаев аварий, перечисленных в таблице 10, не имелось никакого резкого пика мощности. Это следует интерпретировать как указание на медленный выброс мощности, т. е. такой выброс, когда интервалы времени между пиками мощности составляют минуты или более, а следовательно, обратный период равен 10 мс-1 или менее. Заметим, что авария 20 была в металлической системе. Хотя не существует никаких экспериментов с металлическим плутонием, дающих основу для сравнения, в двух авариях с возникновением СЦР в эксперименте с металлическим плутонием в Лос-Аламосе (1945 и 1946 годы) были подобные же значения удельного выхода в пике.
Таблица 10. Энерговыделение при аварии
C. Результаты наблюдений и уроки, извлеченные из производственных аварий с возникновением СЦР
На сегодняшний день имеются описания 22 аварий, которые произошли при технологических операциях обработки делящихся материалов. Из этих аварий были извлечены существенные и зачастую болезненные уроки. Эти уроки связаны со следующими проектными, управленческими и рабочими атрибутами: общение между работниками; процедуры; учет и накопление делящегося материала; геометрия и объем резервуаров; знания оператора; заново проведенные или единственные в своем роде операции; неправильное функционирование оборудования и неожиданное перемещение растворов. Этот обзор также показал реальные размеры и размах последствий аварий и ценность аварийной сигнализации о возникновении критичности. Существуют и другие существенные факторы, влияющие на риск возникновения аварий, хотя они и не всегда легко выявляются или подчеркиваются при их расследовании. Эти другие факторы включают: (1) осведомленность высшего руководства и его участие в решении вопросов безопасности в целом и, в частности, ядерной безопасности; (2) знания персонала регулирующих органов и его участие в решении вопросов безопасности; (3) национальные и международные согласованные нормы и правила, которые являются как корпоративными, так и правительственными.
Читать дальше