Теперь спросим: одинаково ли трудно отрывать нуклоны от атомных ядер разных химических элементов?
Оказывается, нет.
И вот почему.
БОРЬБА СИЛ
Любое атомное ядро, содержащее больше одного протона, — это арена борьбы двух противоположных явлений. Первое — мезонный обмен, — действуя на ничтожно малых расстояниях, прочно объединяет ядерные частицы. Второе же — электростатическое отталкивание протонов — несравненно слабее, хотя и далеко распространяет свое влияние.
Во всех ядрах так или иначе побеждает мезонный обмен. Ведь раз уж ядро существует, значит, электростатическое отталкивание не смогло одержать верх. Но внутреннее состояние ядер, прочность связи их частиц немало зависят от соотношения созидающих и разрушающих сил.
Теории, которая с исчерпывающей полнотой объяснила бы внутреннее состояние ядер, в науке еще нет. Для создания ее нужно выяснить закономерности строения ядра, так же как это сделано для атома. Как располагаются в ядре нуклоны? Как они движутся? Как распределяется между ними энергия? В наши дни на этот счет существуют лишь предположения. Мы их здесь не будем касаться. Рассуждения, с которыми вы сейчас познакомитесь, носят поэтому очень упрощенный характер.
Возьмём к примеру тот же дейтон — ядро тяжелого водорода. Напомним еще раз его состав: протон плюс нейтрон. В дейтоне действует одно ядерное притяжение, но еще не в полную силу. Объединяя только две частицы, мезонный обмен не использует всех таящихся в нем возможностей. Оба нуклона находятся как бы на поверхности ядра и поэтому часто «стреляют» мезонами «мимо цели».
Крепче склеиваются мезонным обменом частицы ядра сверхтяжелого водорода трития, состоящего из одного протона и двух нейтронов.
А вот ядро легкого гелия, в котором появился второй протон (на один нейтрон), связано слабее ядра трития. Это и понятно: ведь вступило в свои права электростатическое отталкивание протонов.
Но стоит прибавить сюда еще один нейтрон — и связь резко возрастет. В ядре обычного гелия (комбинация двух протонов и двух нейтронов, называемая также альфа-частицей) каждый нуклон приклеен к своим собратьям почти втрое сильнее, чем в ядре легкого гелия.
Путешествуя дальше по «карте микромира», как образно называют иногда таблицу Менделеева, мы убеждаемся, что вначале прочность ядер с некоторыми колебаниями быстро растет, а затем, по мере увеличения веса и размеров ядер, постепенно снижается.
Ядра — рекордсмены прочности — находятся примерно в середине менделеевской таблицы. В них мезонный обмен особенно интенсивен, ибо подавляющее большинство нуклонов оказывается там внутри ядра и работает «во всю силу». «Мимо цели» их мезоны не попадают. Казалось бы, с дальнейшим увеличением числа нуклонов ядро должно делаться еще прочнее. А на самом деле происходит спад прочности.
Как его объяснить?
Общее влияние притяжения нуклонов в крупных ядрах ослабляется большим количеством частиц. Мезонный обмен, реализуясь на ничтожных расстояниях, не может охватить с прежней силой увеличившуюся семью нуклонов. Вместе с тем все заметнее сказывается предательское отталкивание протонов.
Теория предсказывает: ядра с числом протонов больше примерно 120 существовать не могут. Возникнув, они тотчас были бы разорваны электростатическим отталкиванием. А на практике в естественных земных условиях наибольшее число протонов — 92, в ядрах урана. И это весьма «рыхлые», неустойчивые образования.
ЯДЕРНАЯ ЭНЕРГИЯ
Что произойдет, если менее прочное, менее устойчивое ядро мы превратим в более прочное, более устойчивое?
Лампа устойчиво стоит на столе. Значит, она не может сама упасть, разбиться, наделать шуму.
Упав все-таки на пол, лампа дальше падать не может. Значит, очутившись на полу, она сделалась крепче привязанной к Земле, более устойчивой.
Всегда при переходе в более прочное, более устойчивое состояние тело или система тел превращают потенциальную энергию в работу. Таков закон природы. И он в полной мере относится к миру атомных ядер.
Значит, в итоге превращения менее прочной комбинации ядерных частиц в более прочную произойдет то же, что при падении лампы на пол: освободится энергия, совершится работа. Но можно заранее сказать, что теперь она будет колоссальна. Вы убедитесь в этом, снова вспомнив закон взаимосвязи массы и энергии.
Дело в том, что прочность ядра полностью определяется величиной, хорошо доступной измерению, — средней массой нуклона. Ведь, по Эйнштейну, уменьшение запаса потенциальной энергии в теле неминуемо сопровождается уменьшением его массы. И чем крепче в ядре привязан нуклон к своим соседям, чем больше израсходовал он своей потенциальной энергии на связь, чем меньший запас этой энергии остался в частице, тем меньше сделалась ее масса, тем нуклон легче. Мы приходим к выводу: в более прочных ядрах нуклоны легче, в менее прочных — тяжелее.
Читать дальше