Как же объяснить все то, что запечатлела кинокамера? Представим себе, что на натянутую резиновую мембрану с некоторой высоты падает металлический шарик, щедро смазанный клеем. После того, как он достигнет поверхности мембраны, произойдет следующее. Мембрана под влиянием ударившегося о ее поверхность шарика прогнется, затем, дополнительно натянувшись при прогибе, она начнет выравниваться, подбрасывая шарик кверху, сообщив ему при этом часть той энергии, которую мембрана получила от шарика, упавшего на нее. Так как шарик, соприкоснувшись с мембраной, приклеился к ней, взлетая вверх, он потянет за собой и мембрану; при этом образуется тянущийся за шариком полый резиновый стержень. А затем шарик начнет двигаться вниз, и все повторится снова.
При падении капли на поверхность воды происходит нечто подобное, однако многие детали процесса моделью шарик — мембрана не описываются. Падающий шарик создает в мембране просто углубление, а дождинка кроме углубления создает также множество мелких капель-осколков; симметрично разлетающихся в разные стороны. Именно это и заметил Темин, которому совокупность брызг представилась водяной лилией. А следующий за брызгами всплеск воды, подобный полому резиновому стержню, тянущемуся за железным шариком, Кедрину представился серебряным гвоздиком с алмазною шляпкой. В модели шарик — мембрана деталь, увиденная Паустовским, отсутствует. Высокий и тонкий водяной стержень завершается каплей или несколькими каплями по той же причине, по которой тонкая водяная нитка, от которой отрывается крупная капля, разбивается на множество маленьких капель — сателлитов. Цилиндрическая форма жидкости невыгодна или, лучше так,— менее выгодна, чем сферическая, и поэтому цилиндр распадается па капли; самую крупную из них Паустовский заметил в тот момент, когда она погружалась в возникавшую под ней водяную чашу. Эта капля и напомнила Паустовскому блестящую жемчужину.
Высота гвоздика, время, необходимое, чтобы он возник и опал, определяются не только тем, какого размера была дождинка и с какой высоты она упала, но и тем, каковы физические свойства воды — ее вязкость и поверхностная энергия. Кинокадры свидетельствуют о том, что «гвоздик», высота которого около пяти сантиметров, вырастает и опадает приблизительно за сотую долю секунды. Приблизительно эта величина и получится, если вязкость воды разделить на ее поверхностную энергию и умножить на высоту гвоздика,— именно так надо поступать, чтобы вычислить интересующее нас время.
Поскольку процессы, которые происходят вслед за падением дождинки на воду, зависят от вязкости и поверхностного натяжения воды, видимо, они должны выглядеть по-иному, если дождинка и лужа будут не водяными, а, скажем, глицериновыми. У глицерина вязкость значительно больше, и это, наверное, скажется и на лилии, и на гвоздике, и на жемчужине. Но об этом — в другом очерке,
Я совсем не хочу, чтобы рассказанное здесь было воспринято как предложение пользоваться скоростной кинокамерой или иным физическим прибором для исследования достоверности поэтических образов или в качестве арбитра в затянувшемся споре между «физиками» и «лириками». Просто воспользовался стихами и скоростной кинокамерой, чтобы рассказать о явлении, на которое все смотрели и все видели по-разному.
В английском журнале «Физика и химия поверхности» была помещена подборка фотографий, изображающих последовательность форм, которые принимает очень тонкая коническая вольфрамовая игла, если в течение длительного времени ее выдерживать при высокой температуре.
Оказывается, что со временем на кончике иглы формируются шарики — капли.
В нашей лаборатории были получены очень похожие фотографии, но иглы, с которыми мы экспериментировали, были не из вольфрама, и вообще не из металла, а из воды. О них рассказано в очерке «Капля падает на жидкость».

Иглы вольфрама, распадающиеся на капли, очень напоминают водяные иглы
Я сравнил фотографии и поразился общности явления в жидких иглах воды и в кристаллических иглах вольфрама — самого тугоплавкого из всех металлов. Получилось очень убедительное доказательство справедливо сти физической идеи, согласно которой кристаллические тела, подобно жидким, могут вязко течь. То, что вязкость кристаллов несравненно более высока, чем вязкость жидкости,— обстоятельство важное, но в принципе существо дела оно не должно менять. Важно, что и кристалл и жидкость могут вязко течь и подобные по форме тела должны деформироваться, подчиняясь общим законам. Эта идея в физику вошла прочно; она, например, лежит в основе физической теории спекания кристаллических порошков, согласно которой кристаллические крупинки «сливаются», подобно капелькам жидкости.
Читать дальше