В нашем рассказе, однако, надо обратить внимание на одну важную деталь процесса захвата. Когда пузырек еще полностью кристаллом не поглощен и еще имеет контакт с жидкостью, он остается местом преимущественного стока избыточных атомов газа. Именно поэтому он становится вытянутым. Впечатление такое, что движущийся фронт растягивает поглощенный пузырек, как резину, а в действительности, поглощая газ, пузырек подрастает.
Очень хорошо процессы «вскипания» жидкости вблизи фронта и захвата образующихся пузырьков можно наблюдать при кристаллизации нафталина. В тонком препарате кристаллизовался слой расплавленного нафталина, и все происходящее регистрировалось кинокамерой. На фотографии видно и то, что вскипание происходит не сразу, а лишь после того, как пересыщение газа достигнет какого-то предела и газовые пузырьки начнут захватываться кристаллом, а затем вытягиваться, превращаясь в протяженные газовые полости. Нафталин — это экзотика, просто удобный «модельный» кристалл. Так же как и в нафталине, газовые пузырьки «поселяются», скажем, и во льду, который обычно бывает очень пористым и является отнюдь не экзотическим кристаллом: им покрыта значительная часть поверхности нашей планеты.
Читатель, видимо, ждет морали, хочет извлечь урок из рассказа о газовых пузырьках. С удовольствием преподаю его. С появлением газовых пузырьков можно разумно бороться. Для этого надо кристаллизацию вести помедленнее, а газ отсасывать от фронта побыстрее. Если диффузия этого сделать не успеет, ей можно помочь, перемешивая расплав перед фронтом кристаллизации для того, чтобы избыточный газ, накопившийся в тонком слое перед фронтом, распределился в большем объеме расплава. Такая возможность широко используется.
И еще один вывод — самоочевидный и очень важный. Ясное понимание физики процесса — верный путь к решению жизненно важных производственных проблем. Я об этом всегда думаю, вспоминая близкий мне пример успеха литейщиков военных лет.
Две расположенные рядом фотографии, на которых изображено одно и то же место в кристалле в том виде, каким оно было до изучаемого события, и после него, — в моих глазах обладают доказательной силой, увеличенной фактом их соседства. Возникает иллюзия, будто присутствовал при событии, которое произошло между двумя моментами, запечатленными на фотографиях.
Фотографии, о которых я хочу рассказать, были получены с помощью электронного микроскопа в Институте кристаллографии АН СССР при изучении судьбы постороннего включения в монокристалле германия.
Всмотримся в фотографии. Первая из них рассказывает о том, что до некоторого момента времени вокруг постороннего включения, которому в монокристалле тесно, была весьма напряженная область. Об этом свидетельствуют темные поля вокруг включения. Поля видны отчетливо, и наличие напряжений вне сомнений. Вторая рассказывает о том, что после некоторого момента в кристалле нечто произошло: включению стало не так тесно, напряжения исчезли, поле вблизи включения просветлело. При этом, однако, вблизи включения появилась дислокационная петля. Она видна отчетливо.
Естественно возникает вопрос: каким образом появление дислокационной петли привело к исчезновению тесноты? На этот вопрос ответить нетрудно: устранить тесноту — значит немного увеличить объем полости, в которой включение расположено. А это может быть сделано путем удаления с границы включение — кристалл части атомов, принадлежащих кристаллу. Вот из этих атомов и образовался внедренный между плоскостями в решетку германия слой германиевых атомов. Дислокационная петля ограничивает этот слой.

Если мы правильно представляем себе происшедшее событие, то между радиусом включения R , «степенью тесноты», которую удобно характеризовать отношением недостающего для устранения тесноты объема полости к ее полному объему, ε= Δ V/V, и радиусом дислокационной петли r должна существовать количественная связь. Найдем эту связь, сопоставив полученную формулу с фотографиями, и, если сопоставление окажется удовлетворительным, будем считать, что мы поняли, о чем фотографии хотели нам рассказать.
Объем пустоты, необходимой для устранения тесноты, равен
Читать дальше