Женеву трудно чем-то удивить: она насмотрелась революционных преобразований. На фоне Реформации и Просвещения подземные сражения частиц вряд ли наберут хоть сколько-нибудь больше нуля по исторической «шкале Рихтера».
А вот если поехать на запад от Женевы, то попадешь во французскую сторону, где царят тишина и покой. Чтобы не нарушить эту идиллию, ЦЕРН стремился ступать по здешней земле очень осторожно. По разбросанным тут и там пастбищам и винным фермам у подножия укутанных в туман Юрских гор ни за что не догадаешься, что на глубине около ста метров здесь пролегло гигантское ускорительное кольцо. И только редкие указатели, по которым ориентируются водители церновских микроавтобусов, и линии электропередач, прочерчивающие золотисто-зеленый пейзаж, служат едва заметным намеком.
Кстати, об электроэнергии. Она вызвала, пожалуй, больше всего толков, так как львиная доля электропотребления в этом регионе приходится на ЦЕРН. Сначала лаборатория находилась на попечении Швейцарии, а теперь электричество сюда поставляет Франция. Когда все системы вступят в строй, ЦЕРНу будет нужно столько же электроэнергии, сколько потребляет весь кантон Женева. А поскольку в регионе преобладает электрическое отопление, зимой энергоресурсы будут в особом дефиците.
В итоге, будучи соседом, всегда готовым пойти навстречу, ЦЕРН решил подстраивать свое энергопотребление под текущую ситуацию, например, заранее планируя на самый холодный период технические перерывы. Хоть из-за них накопление данных и задерживается, зимнее выключение, к счастью для экспериментаторов, увлекающихся спортом, приходится как раз на разгар лыжного сезона в прилегающих Альпах.
Чтобы переделать тоннель БЭП под БАК, его сначала пришлось полностью опустошить. Едва электроны с позитронами сделали в 2000 г. по кольцу последний заход, как начался капитальный ремонт. Были заказаны тысячи сверхпроводящих магнитов разных сортов. Первый сорт, так называемые дипольные магниты, предназначался для того, чтобы удерживать в кольце пару протонных (или ионных) пучков. (Научная программа БАК предполагает также эксперименты с ускоренными ионами вместо протонов.) Диполи имеют свойство направлять заряженные тела перпендикулярно своему магнитному полю, что идеально подходит для управления пучком. Магниты второго типа фокусируют пучок, не давая ему «рассыпаться». Чтобы не усложнять конструкцию, их смонтировали через равные участки кольца. По его длине встречаются также вкрапления более изощренных магнитов - секступоли, октуполи и декуполи, которые позволяют выполнять тонкую подстройку пучка. Орбита, как в долгой космической одиссее, должна быть просчитана до мелочей.
Частица в ускорителе испытывает влияние магнитов, которые попеременно то подправляют ее траекторию, то возвращают ее обратно в пучок. Но надо ведь еще и проводить эксперименты, поэтому кольцо не совсем кольцо. На самом деле оно разделено на 8 секторов с автономным питанием. Каждый сектор состоит из дугообразной части и прямого отрезка. В пределах последнего и выполняется большинство операций: впрыск частиц, сужение пучка, проведение экспериментов и масса всего остального.
Ученые знали: для успешной работы необходимо создать в БАК экстремальные условия. А именно воспроизвести на Земле два аспекта суровой космической действительности. Во-первых, полет каждого из пары пучков, пронизывающих магниты, должен проходить по возможности в вакууме. Иначе протоны (или ионы), разгоняясь до сверхвысоких энергий, начнут налетать на молекулы газа, как незадачливые пешеходы. Чтобы этого избежать, установленная система насосов поддерживает в трубках давление в 10 -10(одну десятую триллионной доли) от атмосферного на уровне земной поверхности. Довольно душновато по сравнению с межпланетным пространством, но это тем не менее самый пустой вакуум на Земле.
Во-вторых, эти тысячи магнитов все надо охладить ниже критической температуры, чтобы они перешли и оставались в сверхпроводящем состоянии. Тогда магнитное поле в них выходит на максимум, составляющий свыше 8,3 тесла (в два раза больше, чем у «Теватрона»). Чтобы достичь таких экстремально низких температур, инженеры воспользовались сверхтекучим гелием, нагретым всего на 1,9 градуса выше абсолютного нуля. Это высококоррелированное состояние второго химического элемента даже холоднее реликтового излучения, с помощью которого Пензиас и Вильсон подтвердили теорию Большого взрыва.
Читать дальше