Таким образом, объяснение все-таки играет ту же самую первостепенную роль в чистой математике, как оно играет ее в науке. Объяснение и понимание мира – физического мира и мира математических абстракций – в обоих случаях является целью изучения. Доказательство и наблюдения – это всего лишь средства проверки наших объяснений.
Роджер Пенроуз извлек из результатов Геделя еще более глубокий, радикальный и достойный Платона урок. Как и Платона, Пенроуза восхищает способность человеческого разума постигать абстрактные определенности математики. В отличие от Платона Пенроуз не верит в сверхъестественное и принимает как само собой разумеющееся, что мозг – часть естественного мира и имеет доступ только к этому миру. Таким образом, задача для него встает даже более остро, чем для Платона: как может беспорядочный, ненадежный мир давать математические определенности такой беспорядочной и ненадежной части себя, какой является математик? В частности, Пенроуза удивляет, как мы можем понять безошибочность новых обоснованных форм доказательства, которых, как уверяет Гедель, бесконечно много.
Пенроуз все еще работает над подробным ответом, но он заявляет, что само существование свободной математической интуиции такого рода фундаментально несовместимо с существующей структурой физики и, в частности, с принципом Тьюринга. Вкратце его доказательство выглядит примерно так. Если принцип Тьюринга истинный, то мы можем рассматривать мозг (подобно любому другому объекту) как компьютер, обрабатывающий определенную программу. Взаимодействия мозга с окружающей средой составляют вводимые и выводимые данные. Теперь рассмотрим математика в процессе решения, обоснован или нет недавно предложенный вид доказательства. Принятие такого решения эквивалентно обработке компьютерной программы обоснования доказательства в мозге математика. Такая программа реализует набор правил вывода Гильберта, которые, в соответствии с теоремой Геделя, не могут быть законченными. Более того, как я уже сказал, Гедель предоставляет способ создания и доказательства истинного высказывания, которое эти правила не способны признать доказанным. Следовательно, математик, разум которого является эффективным компьютером, применяющим эти правила, также никогда не сможет признать это высказывание доказанным. Затем Пенроуз предлагает показать этому самому математику это высказывание и метод доказательства его истинности Геделем. Математик понимает доказательство. Оно все-таки самоочевидно обоснованно, поэтому математик, вероятно, сможет увидеть, что оно обоснованно. Но это бы противоречило теореме Геделя. Следовательно, где-то в доказательстве должно быть ложное допущение, и Пенроуз считает, что этим ложным допущением является принцип Тьюринга.
Большинство специалистов по вычислительной технике не согласны с Пенроузом, что принцип Тьюринга – наиболее слабое звено в его доказательстве. Они сказали бы, что математик из его доказательства в самом деле не сможет признать высказывание Геделя доказанным. Может показаться странным, почему математик вдруг не сможет понять самоочевидное доказательство. Но взгляните на следующее высказывание:
Дэвид Дойч не может составить последовательное суждение об ис тинности этого утверждения.
Я стараюсь изо всех сил, но не могу составить последовательное суждение о его истинности. Поскольку, если бы я сделал это, я бы составил суждение о том, что я не могу составить суждение о его истинности, и вступил бы в противоречие с самим собой. Однако вы видите, что оно Истинно, не так ли? Это показывает, что высказывание, по крайней мере, может быть необъяснимым для одного человека, но самоочевидно Истинным для всех остальных.
В любом случае Пенроуз надеется на новую фундаментальную теорию физики, которая заменит как квантовую теорию, так и общую теорию относительности. Она давала бы новые предсказания, которые можно проверить, хотя она, безусловно, не противоречила бы ни квантовой теории, ни теории относительности во всех существующих наблюдениях. (Не существует известных экспериментальных примеров, опровергающих такие теории). Однако мир Пенроуза по своей сути весьма отличен от того, что описывает существующая физика. Его основной структурой реальности является то, что мы называем миром математических абстракций. В этом отношении Пенроуз, реальность которого включает все математические абстракции, но, вероятно, не все абстракции (подобные чести и справедливости), находится где-то между Платоном и Пифагором. То, что мы называем физическим миром, является для него вполне реальным (еще одно отличие от Платона), но каким-то образом это является частью самой математики, или вытекает из нее. Более того, в его мире не существует универсальности; в частности, не существует машины, способной передать все возможные мыслительные процессы людей. Однако мир (конечно, в особенности его математическое основание), тем не менее, остается постижимым. Его постижимость гарантирована не универсальностью вычислений, а явлением, достаточно новым для физики (хотя и не для Платона): математические категории напрямую взаимодействуют с человеческим мозгом через физические процессы, которые еще предстоит открыть. Таким образом, мозг, по Пенроузу, занимается математикой, ссылаясь не только на то, что мы сейчас называем физическим миром. Он имеет прямой доступ к реальности математических Форм Платона и может постичь там математические истины (за исключением грубых ошибок) с абсолютной определенностью.
Читать дальше
Конец ознакомительного отрывка
Купить книгу