Девид Дойч - Структура реальности

Здесь есть возможность читать онлайн «Девид Дойч - Структура реальности» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва-Ижевск, Год выпуска: 2001, Издательство: РХД, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Структура реальности: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Структура реальности»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Предлагаемая Вашему вниманию книга известного специалиста по квантовым компьютерам и квантовым вычислениям Дэвида Дойча своим выходом во многом обязана поддержке ректора Московского Государственного университета академика РАН В. А. Садовничего. В этой книге автор не только систематически рассматривает физические принципы нового описания реальности, но и предлагает свои любопытные философские рассуждения. Более подробно с различными аспектами квантовых компьютеров и квантовых вычислений читатель может ознакомиться на страницах журнала «Квантовые компьютеры и квантовые вычисления», который выпускается научно-издательским центром «Регулярная и хаотическая динамика».

Структура реальности — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Структура реальности», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Тем временем математики продолжали строить свои абстрактные небесные замки. Для практических целей многие такие строения казались достаточно надежными. Некоторые из них стали необходимы для науки и техники, а большинство образовало красивую и плодотворную структуру. Тем не менее, никто не мог гарантировать, что вся эта структура, или какая-то существенная ее часть, не имела в своей основе логического противоречия, которое буквально лишило бы ее всякого смысла. В 1902 году Бертран Рассел доказал несостоятельность схемы строгого определения теории множеств, которую только что предложил немецкий логик Готлоб Фреге. Это не значило, что эта схема непременно была необоснованной для использования множеств в доказательствах. На самом деле совсем немногие математики всерьез считали, что хоть какой-то из обычных способов использования множеств, арифметики или других ключевых разделов математики может быть необоснованным. В результатах Рассела поражало то, что математики верили, что их предмет является par excellence средством получения абсолютной определенности через доказательство математических теорем. Сама возможность разногласий относительно обоснованности различных методов доказательства подрывала всю суть (как считалось) предмета.

Поэтому многие математики чувствовали, что подведение под теорию доказательства, а тем самым и под саму математику, надежной основы было насущным делом, не терпящим отлагательства. Они хотели объединиться после своих опрометчивых выпадов, чтобы раз и навсегда определить, какие виды доказательства являются абсолютно надежными, а какие нет. Все, что оказалось вне зоны надежности, можно было бы отбросить, а все, что попадало в эту зону, стало бы единственной основой всей будущей математики.

В этой связи голландский математик Лейтзен Эгберт Ян Брауэр пропагандировал чрезвычайно консервативную стратегию теории доказательства, известную как интуиционизм, которая и по сей день имеет своих сторонников. Интуиционисты пытаются толковать «интуицию» самым ограниченным постижимым образом, оставляя лишь то, что они считают ее неоспоримыми самоочевидными аспектами. Затем они поднимают таким образом определенную математическую интуицию на уровень даже более высокий, чем позволял себе Платон: они считают ее более веской, чем даже чистая логика. Таким образом, они считают саму логику ненадежной, за исключением тех случаев, когда ее доказывает прямая математическая интуиция. Например, интуиционисты отрицают, что можно иметь прямую интуицию какой-либо бесконечной категории. Следовательно, они отрицают существование любых бесконечных множеств, например, множества всех натуральных чисел. Высказывание о том, что «существует бесконечно много натуральных чисел», они сочли бы самоочевидно ложным. А высказывание о том, что «существует больше сред Кантгоуту, чем физически возможных сред», – абсолютно бессмысленным.

Исторически интуиционизм, равно как и индуктивизм, сыграл ценную освободительную роль. Он осмелился подвергнуть сомнению полученные определенности – некоторые из которых действительно оказались ложными. Но как позитивная теория о том, что является или не является обоснованным математическим доказательством, он и гроша ломаного не стоит. В действительности интуиционизм – это точное выражение солипсизма в математике. В обоих случаях наблюдается Чрезмерная реакция на мысль о том, что мы не можем быть увере ны в том, что нам известно о более отдаленном мире. В обоих случаях предложенное решение состоит в том, чтобы уйти во внутренний мир, который мы, предположительно, можем познать напрямую, и следовательно (?), можем быть уверены, что познали истину. В обоих случаях решение заключается в отрицании существования – или, по крайней Мере, в отказе от объяснения – того, что находится вовне. И в обоих случаях этот отказ также делает невозможным объяснение большей Части того, что находится внутри предпочитаемой области. Например, если действительно ложно то (как утверждают интуиционисты), что существует бесконечно много натуральных чисел, то можно сделать вывод, что может существовать только конечное множество таких чисел. А сколько их может быть? И потом, сколько бы их не было, почему нельзя создать интуицию следующего натурального числа, превышающего последнее? Интуиционисты оправдались бы в этом случае, сказав, что приведенный мной аргумент допускает обоснованность обычной логики. В частности, он содержит процесс вывода: из факта, что не существует бесконечно много натуральных чисел, делается вывод, что должно существовать какое-то конкретное количество натуральных чисел. Применяемое в данном случае правило вывода называется законом исключенного третьего. Этот закон гласит, что для любого высказывания Х (например, «существует бесконечно много натуральных чисел»), не существует третьей возможности кроме истинности Х и истинности отрицания Х («существует конечное множество натуральных чисел»). Интуиционисты хладнокровно отрицают закон исключенного третьего.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Структура реальности»

Представляем Вашему вниманию похожие книги на «Структура реальности» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Структура реальности»

Обсуждение, отзывы о книге «Структура реальности» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.