Классический пример такого рода, возникший на рубеже нашего столетия, относится к законам электромагнитного поля.
Несколькими десятилетиями раньше Майкл Фарадей и другие физики установили, что электричество и магнетизм тесно связаны между собой и что одно порождает другое. Действие электрических и магнитных сил удобнее всего было описать, пользуясь понятием поля — невидимого воздействия, создаваемого материей, простирающегося далеко в пространство и способного влиять на электрически заряженные частицы, электрические токи и магниты. Действие такого поля можно наблюдать, если попытаться сблизить два магнита: не соприкасаясь друг с другом, они будут отталкиваться или притягиваться.
Позднее, в 50-х годах XIX в., Джеймс Клерк Максвелл, опираясь на эти факты, разработал теорию, связав электрическое и магнитное поля единой системой уравнений. Сначала Максвелл обнаружил, что эти уравнения “несбалансированны”: члены, относящиеся к электрическому и магнитному полям, входят в них не вполне симметрично. Чтобы придать уравнениям более красивый и симметричный вид, он ввел дополнительный член. Его можно было бы интерпретировать как не замеченный ранее эффект — порождение магнетизма переменным электрическим полем, но оказалось, что такой эффект действительно существует. Природа, очевидно, одобрила эстетический вкус Максвелла!
Введение дополнительного члена в уравнения Максвелла повлекло за собой чрезвычайно глубокие последствия. Во-первых, это позволило соединить электрическое и магнитное поля в единое электромагнитное поле. Уравнения Максвелла можно считать первой единой теорией поля, первым шагом на долгом пути к суперсиле. Они показали, что две силы природы, кажущиеся на первый взгляд совершенно различными, в действительности могут оказаться двумя различными проявлениями объединяющей их силы.
Во-вторых, среди решений уравнения Максвелла обнаружились неожиданные, но весьма многообещающие. Выяснилось, что уравнениям Максвелла удовлетворяют различные синусоидальные функции (опять симметрия!), которые, как уже говорилось ранее в этой главе, описывают периодические колебания, или волны. Эти электромагнитные волны, заключил Максвелл, самостоятельно распространяются в поле, т.е. в том, что кажется пустым пространством. Из своих уравнений он вывел формулу, выражающую скорость электромагнитных волн через электрические и магнитные величины. Подставляя численные значения, Максвелл получил, что скорость электромагнитных волн составляет около 300 000 км/с, т.е. совпадает со скоростью света. Отсюда последовал неизбежный вывод: свет должен представлять собой электромагнитную волну. Он действительно может распространяться в пустом пространстве, именно поэтому мы и видим Солнце.
Пойдя дальше, Максвелл предсказал также существование электромагнитных волн другой длины, и через несколько лет его предсказание подтвердилось: Генрих Герц открыл в лабораторных условиях радиоволны. Сегодня мы знаем, что гамма-, рентгеновское, инфракрасное, ультрафиолетовое и СВЧ-излучения также представляют собой электромагнитные волны. Небольшая добавка, внесенная Максвеллом в уравнения (носящие ныне его имя) из соображений симметрии, принесла большие результаты.
Открытие электромагнитных волн имело далеко идущие последствия, приведя к появлению радиотехники и в конечном счете к современной революции в электронике. Это великолепный пример, наглядно демонстрирующий не только гигантские возможности математики в описании мира и расширении нашего знания о нем, но и роль симметрии и красоты как путеводного принципа. Но оценить полностью все следствия, вытекающие из симметрии уравнений Максвелла, удалось лишь через пятьдесят лет.
На рубеже XX в. Анри Пуанкаре и Хендрик Лоренц исследовали математическую структуру уравнений Максвелла. Их особенно интересовали симметрии, скрытые в математических выражениях, — симметрии, которые тогда еще не были известны. Оказалось, что знаменитый “дополнительный член”, введенный Максвеллом в уравнения для восстановления равноправии электрического и магнитного полей, соответствует электромагнитному полю, обладающему богатой, но тонкой симметрией, которая выявляется лишь при тщательном математическом анализе. По-видимому, только Эйнштейн с его сверхъестественной интуицией мог предвидеть из физических соображений существование подобной симметрии.
Симметрия Лоренца—Пуанкаре аналогична по своему духу таким геометрическим симметриям как вращения и отражения, но отличается от них в одном важном отношении: никому до этого не приходило в голову физически смешивать пространство и время. Всегда считалось, что пространство — это пространство, а время — это время. То, что в симметрию Лоренца—Пуанкаре входят оба компонента этой пары, было странно и неожиданно.
Читать дальше