Теория относительности, которая произвела революцию в наших представлениях о времени и пространстве, и которая приводит к очень важным следствиям, до 1918 г. (до конца конец Первой мировой войны) оставалась неизвестной широким кругам, за исключением немногих специалистов. Затем ситуация изменилась, и она привлекла всеобщее внимание благодаря новому способу мышления и новой философии.
Это случилось в то время, когда все устали от войны и победители и побежденные. Люди хотели чего-то нового. Теория относительность давала именно то, что было нужно, и она стала центральным аргументом преобразований. Это позволило людям забыть на время ужасы войны и проблемы, которые она вызвала.
Об относительности было написано фантастическое число статей в газетах и журналах. Никогда прежде и затем специфическая идея не вызывала такого огромного интереса. Большинство из того, что писалось и говорилось, относилось к общим философским идеям, а не являлось серьезным научным обсуждением. Было мало точной информации, но многие люди были счастливы изложить свои идеи.
В Великобритании только один человек, астроном и математик, сэр Артур Эддингтон (1882—1944) по-настоящему понял, что такое теория относительности, и стал авторитетнейшим специалистом в этой области в своей стране. Его крайне интересовали астрономические следствия теории и возможность проверки теории с помощью астрономических наблюдений. Три возможных проверки теории, основанные на предсказаниях Эйнштейна, были сделаны в его работе 1915 г. Первая связана с движением планеты Меркурий. Было установлено, что перигелий (точка траектории планеты, ближайшая к Солнцу) Меркурия смещается за оборот приблизительно на 43 угловые секунды. Это не укладывалось в теорию Ньютона и долго озадачивало астрономов.
Новая теория Эйнштейна точно предсказывала этот эффект, и измерения Эддингтона подтвердили эти предсказания. Это было большим успехом теории, но оставило Эйнштейна безучастным, когда он узнал о подтверждении Эддингтона, так как нисколько не сомневался в справедливости своей теории.
Второе подтверждение связано с отклонением света, который проходит вблизи Солнца. Теория гравитации Эйнштейна утверждает, что свет, проходящий вблизи Солнца, должен отклоняться. Согласно теории Ньютона, также должно быть отклонение, но оно в два раза меньше того, что предсказывается Эйнштейном (рис. 20). Поэтому, наблюдая звезды вблизи солнечного диска, чей свет проходит вблизи Солнца, прежде чем достигает Земли, можно проверить теорию. Однако мы можем наблюдать звезды вблизи солнечного диска только в момент полного затмения, когда свет Солнца блокирован Луной. Подходящее затмение происходило в 1919 г., и Эддингтон организовал две экспедиции для его наблюдения: одну в Бразилию под руководством А. С. Кроммелина (1865— 1939) из Гринвичской обсерватории, а другую на Принцевы Острова, около побережья Испанской Гвинеи, руководимую им самим. Обе экспедиции получили результаты, подтверждающие теорию Эйнштейна. В Лондоне, 6 ноября, на объединенном собрании Королевского Общества и Королевского астрономического общества, президент Королевского общества, нобелевский лауреат Дж. Дж. Томсон, услышав результаты Эддингтона, превознес работу Эйнштейна как «одно из высочайших достижений человеческой мысли».
Рис. 20. Во время затмения Солнца можно наблюдать свет, приходящий от двух звезд сбоку от диска Солнца. Из-за того, что гравитационное поле Солнца искривляет свет, звезды, наблюдаемые с Земли в направлении продолженных лучей, кажутся разнесенными дальше, чем на самом деле
Однако точность этих подтверждений была недостаточно высока из-за трудностей таких наблюдений. Совсем недавно этот эффект смог подвергнуть проверке за счет использования вместо света микроволн. Были открыты объекты звездного типа, сильно излучающие в радиодиапазоне (квазизвездные радиоисточники, или квазары). Когда один из них находится позади Солнца, мы можем наблюдать, отклоняются ли радиоволны, проходящие вблизи Солнца. Для этого нет необходимости ожидать затмения, поскольку Солнце слабо испускает радиоволны. Результат, с необходимыми коррекциями побочных эффектов, показал, что теория Эйнштейна подтверждается с более высокой точностью, чем на световых волнах.
Читать дальше