Когда Бор боролся с этими проблемами, Планк уже установил, что испускание и поглощение света происходит только конечными величинами энергии, которые он назвал квантами. А Эйнштейн, как мы увидим в следующей главе, уже дал свое объяснение фотоэффекта в рамках квантов света. Так, Бор полагал, что принцип квантования энергии справедлив для любой системы. Поэтому механическая энергия системы должна быть квантована, т.е. можно предположить только некоторые дискретные значения, и энергия системы может изменяться не произвольно, а только дискретными значениями. Системы можно представить себе как маленькую башню из кирпичей (рис. 17), высоту которой можно изменять, только снимая или добавляя толщину кирпича. Подобным же образом энергия системы может увеличиваться или уменьшаться, но не на произвольную величину, а на величину, которая соответствует минимальному кванту (кирпич на предыдущем примере). Разумеется, мы заметим эту дискретность, если минимальная энергия кванта, на которую может происходить изменение, достаточна для того, чтобы быть измеренной, В большинстве случаев это не имеет место, поскольку минимальная величина, на которую может изменяться энергия, так мала, что изменение может показаться непрерывным. В системах крайне малых размеров это уже несправедливо и квантование энергии становится очень важным.
Электроны модели Резерфорда не падают на ядра по той простой причине, что они обладают минимумом энергии, соответствующей условиям модели, и поскольку это минимум энергии, она, по определению, не может еще уменьшиться, и движение электронов должно вечно продолжаться.
Рис. 17. В квантовой теории энергия системы может изменяться лишь дискретно, точно так же как высота кирпичной кладки может изменяться лишь на толщину кирпича
Если мы попробуем добавить энергии атому, то первый квант этой энергии полностью изменит состояние движения атома и переведет его электрон в так называемое первое возбужденное состояние. Для того, чтобы возвратиться в свое нормальное состояние, наш атом должен испустить количество энергии, которое он прежде получил, и среди разных возможностей (это может быть, например, столкновение с другим атомом) он может испустить ее в форме одиночного кванта света, который согласно одному из постулату Бора имеет вполне определенную длину волны. В теории Бора разрешенные состояния энергии даются таинственным соотношением, которое устанавливает, что угловой момент электрона в атоме (произведение импульса электрона на радиус его орбиты) может принимать только дискретные значения, которыми являются произведения целых чисел на константу Планка h/2π .
Рис, 18. Процессы поглощения и испускания фотона, (а) Фотон (который поглощается и исчезает) ударяет электрон, который сидит на внутренней орбите и заставляет его перескочить на внешнюю орбиту, (б) Электрон перескакивает с внешней орбиты на внутреннюю и разность энергий испускается в виде фотона
Эта теория дает формулу
l/h = 109,678 (1/m 2— 1/n 2) ,
которая точно соответствует формуле Бальмера, если m = 2, но предсказывает и другие серии, если m = 1, 3,и т.д. Более того, убедительным аргументом в пользу теории Бора было то, что коэффициент 109,678, который получается из экспериментальных спектроскопических наблюдений, в точности предсказывается теорией. Тем самым, излучение света получает очень простое объяснение. Он испускается всеми атомами, которые возбуждаются тем или иным способом. Последующее девозбуждение дает «квант света» (который позднее был назван «фотоном»). Энергия, испускаемая в виде света, является разностью между энергией возбужденного состояния и состояния наинизшей энергии («основное состояние»), и фотон имеет частоту, которая дается этой энергией, деленной на константу Планка А. По этой схеме формула Бальмера (разность между двумя термами) получается автоматически. Действительно, так как произведение частоты и длины волны равно скорости волны, величина 1/λ, которая появляется в формуле, пропорциональна частоте и, следовательно, энергии. Поэтому, согласно Бору, электроны в атоме могут существовать лишь в определенных состояниях, которые Бор представлял в виде орбит, по которым электроны движутся вокруг ядра. Вопреки требованию классической теории Бор предсказывал, что электрон, когда он находится на этих орбитах, не излучает энергии. Он испускает или поглощает энергию только, когда он переходит с одной орбиты на другую (рис. 18). Энергетические состояния атома обычно представляют, как показано на рис. 19, горизонтальными линиями на высоте, которая зависит от энергии уровня. Обычно на таких диаграммах наинизший уровень представляет основное состояние, а последующие уровни на увеличивающихся высотах представляют возбужденные состояния. Переход с одного уровня на другой можно представить вертикальной линией, как это показано на рисунке, относящемся к водороду. Такие диаграммы будут использоваться далее при объяснении принципов работы мазеров и лазеров.
Читать дальше