Марио Бертолотти - История лазера

Здесь есть возможность читать онлайн «Марио Бертолотти - История лазера» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Долгопрудный, Год выпуска: 2011, ISBN: 2011, Издательство: Издательский Дом «Интеллект», Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

История лазера: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «История лазера»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга, которую Вы взяли в руки — редкий сплав добротного изложения основ современной физики и ее истории. История науки предстает здесь в неразрывной связи драмы идей в познании природы и судеб конкретных людей. Все эти выдающиеся исследователи были захвачены в круговорот жестокой истории XX века, которой в книге уделено немало страниц.
Автору удалось совместить рассказы о жизненном пути замечательных личностей с пристальным, шаг за шагом, анализом гипотез, теории и эксперимента.
Для широкого круга читателей, интересующихся современной физикой.

История лазера — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «История лазера», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Давайте посмотрим, что получается на самом деле. Звезды расположены настолько далеко от Земли, что их свет приходит к нам в виде плоских волн (плоский волновой фронт). В теории телескоп снабжен совершенной оптикой, которая концентрирует свет в маленький, яркий кружок, размеры которого ограничены лишь явлениями дифракции, т.е. действием диаметра главного объектива или зеркала на падающую на него волну. Две близкие звезды можно видеть отчетливо раздельными, если угол, под которым они видны в телескоп, больше минимального значения угла, при котором оба ярких пятна, каждый из которых производится звездой, сливаются в одно пятно. Этот минимальный угол называется угловым разрешением. Лорд Рэлей дал критерий, определяющий эту величину. Угловое разрешение телескопа порядка угловых секунд определяется постоянством времени волнового фронта для волны, преобразуемой входной апертурой телескопа. Так космический телескоп «Хаббл» на орбите вокруг Земли имеет диаметр телескопа 2,4 м, и угловое разрешение, близкое к 0,05 угловых секунд. На Земле такой же 2,4 м телескоп имеет угловое разрешение в 20 раз хуже из-за искажений в атмосфере.

Телескопы строятся с большими апертурами, т.е. с зеркалами большого диаметра (до нескольких метров), с поверхностью, обработанной с высокой точностью (до долей длины волны). Гигантские собиратели света дают возможность обнаруживать и изучать свойства очень слабых (удаленных) объектов, именно из-за того, что их огромные входные апертуры могли собрать слабый свет, испускаемый объектом. Более того, телескопы с высоким разрешением позволяют разглядеть больше деталей наблюдаемых объектов. К сожалению, малые флуктуации температуры атмосферы вызывают флуктуации коэффициента преломления воздуха. Это, в свою очередь, приводит к тому, что разные части первоначального волнового фронта проходят несколько различные пути, и изображение в телескопе, соответственно, размывается. О таких аберрациях мы уже говорили. Изображение диска звезды, получаемого с помощью телескопа с диаметром 4 м, установленного на земле типично в 40 раз больше того оптимального размера, который должен был бы получаться согласно теории дифракции. Технически это обозначается, как когерентный диаметр атмосферы, и его значение обычно составляет 10—20 см. Тот факт, что фотоны от далекого объекта разбрасываются по пятну в 40 раз большего, чем дифракционный предел, означает, что интенсивность изображения в 402 раз меньше. Поэтому даже хотя большие телескопы с апертурой, большей, чем когерентный диаметр атмосферы, могут собрать больше фотонов, это ничего не дает в смысле увеличения разрешения. Критики могут интерпретировать этот факт как то, что величайшие телескопы мира имеют чрезмерную стоимость.

Исаак Ньютон писал в 1730 г. в своей книге Opticks:

«Если Теорию изготовления Телескопов можно было бы продолжить к Практике, то даже и в этом случае были бы некоторые Пределы, которые нельзя перейти при изготовлении Телескопов. Воздух, через который мы смотрим на Звезды, находится в состоянии вечного Дрожания; как мы можем видеть дрожащее движение Теней, отбрасываемых высокими Башнями, и мерцанием Звезд. Но эти Звезды не мерцают, когда их наблюдают через Телескопы с большими апертурами. Лучи Света, которые попадают на разные части апертуры, дрожат сами по себе, с разным и иногда противоположным действием. Они падают в одно и то же время на разные места сетчатки глаза, и их дрожащие Движения слишком быстры и смешиваются, а не воспринимаются раздельно. И все эти освещаемые Точки создают одну широкую яркую Точку, составленную из этих многих дрожащих Точек, спутано и неразличимо смешанных друг с другом за счет очень коротких и быстрых Дрожаний. Из-за этого Звезда кажется более широкой, чем на самом деле, и совсем без дрожания. Длинные Телескопы могут сделать объект более ярким и большим, в отличие от того, что могут сделать короткие телескопы, но и они не могут устранить размытия Лучей, которые вызываются Дрожанием в Атмосфере. Единственным Средством является прозрачный и спокойный Воздух, такой, который, пожалуй, может быть найден на вершинах высочайших Гор, выше высочайших Облаков».

Очевидно, что необходимы какие-нибудь системы, чтобы исправить эффекты возмущения атмосферой, известные со времен Ньютона. Такой системой является адаптивная оптика. Исторически можно сослаться на первый пример использования адаптивной оптики Архимедом в 215 г. до н. э. для уничтожения римского флота. Когда римский флот приблизился к Сиракузам, солдаты, выстроенные в линию, смогли сфокусировать на корабли солнечный свет, используя свои щиты в качестве зеркал. Таким способом сотни пучков солнечного света направлялись на малую область корабля. Интенсивность была достаточной, чтобы поджечь его. Таким образом, как гласит легенда, удалось предотвратить атаку вражеским флотом. Эта оригинальная идея вошла в легенду как «сжигающее зеркало» Архимеда.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «История лазера»

Представляем Вашему вниманию похожие книги на «История лазера» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «История лазера»

Обсуждение, отзывы о книге «История лазера» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x