Новые слова описывают использование света в его различных применениях. Электроника — термин, обычно употребляемый для характеристик электронов и применений с их участием. Этот термин используется с 1910 г. Когда был открыт мазер, т.е. электронное устройство, для которого было необходимо знание квантовой механики, был придуман термин «квантовая электроника». Этот термин был затем распространен на все устройства электроники, для которых требовалось понимание квантовой механики, например, транзисторы. «Оптоэлектроника» — термин сравнительно недавнего происхождения (впервые он был введен в 1955 г., даже до изобретения лазера), он относится к явлениям и устройствам, работа которых происходит при совместном действии электроники и оптики. Многие современные устройства, использующие лазеры, являются типичными оптоэлектронными устройствами, и сам лазер можно отнести к оптоэлектронному устройству. Для более специфического описания применений в устройствах с использованием фотонов, особенно в области передачи информации, с 1952 г. стали использовать термин «фотоника», означающий, по аналогии с термином «электроника», применение или получение фотонов в устройствах для передачи информации, а также в ряде явлений. К таким явлениям относятся: получение направленного пучка фотонов (света), его отклонение, модуляция и усиление, оптическая обработка изображений, регистрация и запись световых сигналов. Как можно заметить, нет резких границ между этими терминами, и часто они используются взаимозаменяемым образом. Со временем может прийти более точное определение каждого термина.
В 1984 г. глобальный рынок лазеров превышал более чем два миллиона евро в коммерческой области в добавок к одному миллиону в военных целях. А в 1994 г. общий объем продаж лазеров составил 1 млрд. евро. В течение этой эскалации успехов и применений не обошлось без забавных недоразумений. Например, в 1970-х гг. дин работник американской таможни решил, что лазеры безопасны, и могут без ограничений импортироваться и экспортироваться, но это не относится к лазерным пучкам!
Здесь мы хотим упомянуть о некоторых огромных возможностях лазеров, описав некоторые из применений, имеющих большой интерес, как с исторической, так и с современной точек зрения.
Даже до того, как были созданы первые лазеры, они уже вызвали определенный интерес военных из-за принципиальной возможности ряда применений. Было понятно, что высокая направленность лазерного пучка может обеспечить секретность передачи информации, которая получается путем модуляции его интенсивности. Кроме того, возможность фокусирования и формирования пучка позволяет снизить потери при распространении, т.е. избежать недостатка, присущего радиоволнам. Тогда казалось, что лазер сможет обеспечить уникальный способ коммуникаций или даже передачи энергии. Однако первые же эксперименты, выполненные, как только появились лазеры, показали, что атмосфера Земли оказывает вредное влияние на распространение света, он поглощается или рассеивается. Если идет дождь или снег, а также в тумане, распространение невозможно. Но даже при ясной погоде распространение существенно ухудшается. Например, интенсивность не остается постоянной во времени, а начинает беспорядочно флуктуировать из-за явления, которое известно как турбулентность атмосферы. Это хорошо известно астрономам, которые наблюдают, что изображения звезд флуктуируют во времени (они называют этот эффект сцинтилляциями). Однако такого ограничения можно избежать в вакууме, например, между спутниками или на Луне, а также существенно ослабить его при сравнительно коротких дистанциях.
Прекрасный способ распространения световых сигналов без существенных потерь был получен при использовании оптических волокон. Этот способ заменяет распространение электрических сигналов по проводам или радиоволнами. С помощью специальных стеклянных волокон удается быстро передавать большие объемы информации между континентами. Характеристики волоконно-оптической связи лучше, чем радиосвязь и связь по проводам. Сами волокна весят меньше и дешевле, чем медная проволока.
Военные также держали в голове и другие применения, например радар. Радар на оптической частоте может в принципе улучшить точность и «разглядеть» детали мишени, что невозможно даже при использовании миллиметровых радиоволн. Также возможно измерять скорость мишени. С другой стороны, возмущающие эффекты атмосферы на пучки оптических радаров можно использовать для измерений свойств самой атмосферы (такой прибор называется лидаром), таких, как концентрация озона, загрязнения и турбулентности, информация о которых очень важна для авиасообщений.
Читать дальше