Не до шуток, вероятно, и тому читателю, кто настороженно ждет, не связано ли это достижение с чем-нибудь библейским. Спешу успокоить: никаких свидетельств такого рода Максвелл не оставил. И предлагаю читателям самим решить, можно ли подобным свидетельством посчитать отношение к уравнениям Максвелла его младшего современника и сподвижника в статистической физике Больцмана, который свои чувства по поводу уравнений Максвелла выражал строками «Фауста»:
Не Бог ли эти знаки начертал?
Таинственен их скрытый дар!
Они природы силы раскрывают
И сердце нам блаженством наполняют.
Атеист Больцман, похоже, мог поблагодарить Всевышнего за помощь Максвеллу в изобретении понятия поля и в открытии с помощью этого понятия системы законов электромагнетизма.
Не менее сильные чувства испытывали фундаментальные физики следующего поколения.
Макс Планк причислил успех Максвелла к «величайшим триумфам человеческого стремления к познанию», к «наиболее удивительным свершениям человеческого духа» и к проявлениям того, «что между законами природы и законами духа имеются какие-то очень тесные связи».
Эйнштейн подытожил проще, но не менее сильно: «Одна научная эпоха закончилась и другая началась».
В эпоху Максвелла и при его прямом участии произошло объединение физики, до того состоявшей из весьма автономных частей: механика, теплота и оптика. Статистическое объяснение теплоты объединило ее с механикой, а оптика оказалась проявлением электромагнитных сил. Но подлинно эпохальную роль Максвелл сыграл в том, что фундамент физики был впервые капитально перестроен. Величественное здание, заложенное Галилеем и возведенное Ньютоном, вместило новую физику молекулярно-тепловых явлений, но оказалось тесным, чтобы вместить — без перестройки — физику электромагнетизма.
Глобальное электромагнитное объединение
Из достижений Максвелла физиков более всего поразило раскрытие электромагнитной природы света — древнейшего, важнейшего и общедоступного физического явления, ничем не напоминавшего электричество и магнетизм.
Первый намек увидел Фарадей, обнаружив в 1845 году, что магнитное поле влияет на свет. К тому времени уже было известно, что свет — это волны, то есть распространение колебаний, и что колебания эти поперечны: происходят поперек направления распространения. Считалось, что колеблется «светоносный эфир» — незаметная среда, похожая, однако, на твердые тела, в которых лишь и бывают поперечные колебания, а в газах и жидкостях возможны лишь продольные, как, например, звук. Из естественного света можно выделить часть, в которой колебания происходят лишь в одном направлении, — поляризованный свет. Наблюдая распространение такого света в магнитном поле, Фарадей обнаружил, что направление поляризации поворачивается, и заподозрил влияние магнитного поле на светоносный эфир.
Лишь когда Максвелл получил систему уравнений электромагнитного поля, он обнаружил, что одно из решений этих уравнений — распространение поперечных колебаний, притом со скоростью, всего на один процент отличающейся от скорости света. Максвеллу понадобилось еще несколько лет, чтобы прийти к выводу, что величина скорости, полученная из электромагнитных измерений, и величина, полученная в опытах со светом, — это два разных способа измерения одного и того же. И что свет — это частный случай электромагнитных колебаний, когда за одну секунду происходит миллион миллиардов колебаний.
Электромагнитное объяснение света было очень впечатляющим, но говорило об уже известном явлении. А предсказание электромагнитных волн самой разной частоты открывало совершенно новую область физических явлений и, главное, дало возможность проверить саму теорию, которую скептически встретили не только в Германии и Франции, где царила теория дальнодействия. Ее не принял и Уильям Томсон, самый знаменитый тогда в Британии физик, притом расположенный к Максвеллу. Одобрив промежуточную теорию Максвелла, основанную на молекулярных вихрях, Томсон в штыки встретил то, что Максвелл убрал эти вихревые леса, оставив свои уравнения без объяснения.
За проверку взялся германский физик Генрих Герц, имевший свои причины сомневаться в Максвелловой теории. Заставить электрический заряд делать миллион миллиардов колебаний в секунду и проверить, появится ли свет, было задачей невыполнимой, но проверить теорию можно было и колебаниями гораздо меньшей частоты.
Читать дальше
Конец ознакомительного отрывка
Купить книгу