Эти четыре автора были первыми, кто показал, что при разумном выборе пространств Калаби — Яу и пронизывающих их отверстия потоков, можно прийти к струнным моделям с небольшими положительными значениями космологической постоянной, сопоставимыми с наблюдаемыми данными. Впоследствии, совместно с Хуаном Малдасеной и Лайамом Макалистером, эта группа опубликовала крайне важную статью о том, как совместить инфляционную космологию с теорией струн.
Если быть более точным, этот горный рельеф будет существовать внутри приблизительно 500-мерного пространства, независимые направления которого — координатные оси — будут соответствовать различным полевым потокам.
Рисунок 6.4 даёт приблизительную картину, но позволяет получить представление о взаимосвязях между различными формами дополнительных измерений. Помимо этого, говоря о струнном ландшафте, физики обычно подразумевают, что кроме возможных значений потоков этот горный рельеф отражает также все возможные размеры и формы (различные топологии и геометрии) дополнительных измерений. Долины струнного ландшафта — это те места (определённые формы дополнительных измерений и их потоков), где естественным образом располагаются пузырьки-вселенные, как расположился бы мяч, скатившийся в долину с реального горного ландшафта. С математической точки зрения долины — это (локальные) минимумы потенциальной энергии, ассоциированной с дополнительными измерениями. В классической теории, если пузырёк-вселенная обретёт форму дополнительных измерений, соответствующую долине, то это свойство останется навсегда неизменным. Однако в квантовой теории туннелирование может привести к изменению формы дополнительных измерений.
Квантовое туннелирование на более высокий пик возможно, но согласно квантовым вычислениям, значительно менее вероятно.
Продолжительность расширения пузырька-вселенной до столкновения определяет силу столкновения и последующие разрушения. Если вернуться к примеру с Трикси и Нортоном из главы 3, такие столкновения поднимают интересный вопрос о времени. При столкновении двух пузырьков-вселенных их внешние края — на которых энергия поля инфлатона имеет большие значения — соприкасаются. С точки зрения наблюдателя, находящегося внутри любого из сталкивающихся пузырьков, большое значение энергии поля инфлатона соответствует ранним моментам времени, близким к моменту Большого взрыва в этом пузырьке. Таким образом, столкновения пузырьков-вселенных происходят на заре их рождения, и потому образовавшиеся волны могут оказывать влияние на ещё один процесс, происходящий в ранней Вселенной, — на образование реликтового излучения.
В главе 8 мы рассмотрим квантовую механику более подробно. Как мы увидим, моё утверждение «находятся за кулисами повседневной реальности» может быть интерпретировано разными способами. Здесь я имею в виду самый простой: уравнение квантовой механики подразумевает, что волны вероятности, как правило, отсутствуют в обычных пространственных измерениях. Наоборот, эти волны распространяются в другой среде, которая учитывает не только привычные пространственные измерения, но также число описываемых частиц. Эта среда называется конфигурационным пространством ; его объяснение заинтересованный читатель может найти в комментарии {71} .
Если наблюдаемое нами ускоренное расширение пространства не постоянно, тогда в некоторый момент в будущем расширение замедлится. Замедление позволит свету от объектов, находящихся в данный момент за пределами нашего космического горизонта, достичь нас; наш космический горизонт увеличится. В этом случае будет совсем странным считать, что миры за пределами нашего горизонта не являются реальными, поскольку в будущем к ним может появится доступ. (Вы можете вспомнить, что в конце главы 2 было отмечено, что показанные на рис. 2.1 космические горизонты будут увеличиваться с течением времени. Это верно для вселенной, в которой темп пространственного расширения не убыстряется. Однако, если расширение ускоряется, то существует расстояние, за которое мы никогда не сможем заглянуть, сколь долго мы не ждали бы. В ускоряющейся вселенной космический горизонт не может превзойти размер, который определяется математически темпом ускорения.)
Приведём конкретный пример свойства, которое может быть общим для всех вселенных из некоторой мультивселенной. В главе 2 отмечалось, что современные наблюдательные данные строго указывают на то, что кривизна пространства равна нулю. Однако довольно сложные математические вычисления показывают, что все пузырьки-вселенные в инфляционной мультивселенной обладают отрицательной кривизной. Грубо говоря, пространственные формы с равными значениями инфлатона — формы, определяемые соединением равных чисел на рис. 3.8 б , — больше похожи на картофельные чипсы, чем на плоскую поверхность стола. Но даже в этом случае инфляционная мультивселенная остаётся совместимой с наблюдениями, потому что при расширении любой формы её кривизна уменьшается (кривизна жемчужины всем очевидна, а кривизна поверхности Земли не замечалась тысячелетиями). Если наш пузырёк-вселенная продолжает испытывать значительное расширение, его кривизна может быть отрицательной и при этом настолько малой, что современные измерения не смогут уловить отличие от нуля. Отсюда следует возможный тест. Если более точные наблюдения в будущем покажут, что кривизна пространства очень мала, но положительна , это опровергнет гипотезу о том, что наша Вселенная является частью инфляционной мультивселенной, как было отмечено Б. Фрайфогелем, М. Клебаном, М. Родригез Мартинезом и Л. Сасскиндом в статье: B. Freivogel, M. Kleban, M. Rodriguez Martinez, and L. Susskind «Observational Consequences of a Landscape», «Journal of High Energy Physics» 0603, 039 [2006]; если измерения дадут положительное значение для кривизны, равное примерно 10 −5, это станет сильным аргументом против квантово-туннельных переходов, которые согласно теории заполняют струнный ландшафт (см. главу 6).
Читать дальше