Одно дело ошибиться в скромном утверждении, которое мало кому интересно. Но наш результат был неожиданным шагом в новом направлении, и неминуемо вызвал бы бурные отклики. Если мы ошибемся, об этом узнают все.
В конце концов, после всех мыслимых проверок и перепроверок, убежденность в нашей правоте укрепилась, и мы решили опубликовать результат. Несколькими днями позже, когда я сидел в своем кабинете в Гарварде, зазвонил телефон. Это был Филипп Канделас из Техасского университета, который сразу же осведомился, сижу я или стою. Я сказал, что сижу. Канделас сообщил мне, что он и двое его студентов, Моника Линкер и Рольф Шиммригк, обнаружили закономерность, услышав о которой, я непременно упаду со стула. Тщательно изучив огромный набор пространств Калаби-Яу, моделированных на компьютере, они обнаружили, что почти все пространства идут парами, отличающимися заменами чисел четномерных и нечетномерных отверстий. Я ответил ему, что все еще сижу: мы с Плессером получили тот же результат. Оказалось, что работа Канделаса и наша работа дополняют друг друга; мы с Плессером пошли на один шаг дальше и показали, что все физические свойства зеркальных пар одинаковы, а Канделас со своими учениками показал, что на пары разбивается гораздо большее число многообразий Калаби-Яу. Эти две работы и привели к открытию зеркальной симметрии в теории струн7).
Физика и математика зеркальной симметрии
Ослабление жесткой и однозначной эйнштейновской взаимосвязи между геометрией пространства и наблюдаемыми физическими явлениями есть яркий пример новизны теории струн. Однако развитие теории струн далеко не исчерпывается изменением философской концепции. Зеркальная симметрия, в частности, дает мощное средство для исследования как физических аспектов теории струн, так и математических аспектов теории пространств Калаби-Яу.
Математики, работающие в области так называемой алгебраической геометрии, изучали пространства Калаби-Яу из чисто математического интереса задолго до открытия теории струн. Они обнаружили множество свойств этих геометрических пространств, никоим образом не предполагая, что их результаты будут когда-нибудь использоваться физиками. Однако определенные черты теории пространств Калаби-Яу оказались слишком сложными для всестороннего математического исследования. Открытие зеркальной симметрии существенно изменило положение дел. По существу, зеркальная симметрия говорит о том, что определенные пары пространств Калаби-Яу, которые ранее считались совершенно независимыми, тесно связаны теорией струн. Связь состоит в том, что если в качестве дополнительных свернутых измерений выбирать два пространства из любой пары, получатся физически эквивалентные вселенные. Такая неожиданная взаимосвязь дает мощный инструмент математических и физических исследований.
Представим, например, что вы хотите вычислить физические характеристики — массы и заряды, — соответствующие выбору одного из возможных пространств Калаби— Яу в качестве дополнительных измерений. При этом вас не особенно заботит степень согласования ваших результатов с экспериментом, так как в настоящее время, в силу ряда рассмотренных выше теоретических и технических причин, экспериментальное подтверждение результатов достаточно проблематично. Вместо этого проводится мысленный эксперимент, который должен показать, как выглядел бы мир, если бы было выбрано данное пространство Калаби-Яу. Сначала все идет хорошо, но в середине такого теоретического анализа возникает необходимость математического расчета непомерной сложности. Никто, ни один из лучших специалистов-математиков, не может подсказать, как поступать дальше. Двигаться некуда. И тут выясняется, что у этого пространства Калаби-Яу есть зеркальный партнер. Поскольку окончательные физические свойства будут одинаковы для каждого члена зеркальной пары, вычисления можно проводить для любого из этих пространств. Таким образом, можно перевести сложное вычисление для первого из пространств на язык его зеркального партнера, и результат вычислений, т. е. физические свойства, будут теми же. Сначала можно предположить, что измененный вариант вычисления будет таким же сложным, как первоначальный. Но возникает приятная и поразительная неожиданность. Обнаруживается, что вид вычисляемого выражения очень сильно отличается от исходного, и, в некоторых случаях, невообразимо сложное вычисление становится поразительно легким в зеркальном пространстве. Не существует простого объяснения, почему это происходит, но, по крайней мере для определенных вычислений, это действительно так, и уменьшение сложности расчетов оказывается впечатляющим. В результате препятствие на пути решения задачи становится преодолимым.
Читать дальше
Конец ознакомительного отрывка
Купить книгу