Тогда работоспособность (эксергия) 100 кДж теплоты составит: для первого случая Eq 1= 100∙(500-300)/500 = 40 кДж, для второго — Eq 2= 100∙(1000-300)/1000 = 70 кДж и для третьего Eq 3= 80 кДж.
Очевидно, что при других Т О.С. значения эксергии будут тоже другими, поэтому учитывать ее нужно обязательно.
Характерно, что сторонники «энергетической инверсии», т. е. извлечения теплоты из окружающей среды, превращения ее в работу и создания на такой основе ppm-2, не признают очевидного факта зависимости работоспособности теплоты от температуры. Это и естественно. Согласие с существованием такой зависимости неизбежно приводит к краху всей концепции ppm-2, поскольку «теплота окружающей среды» при Т = Т О.С. никакой работы дать не может. Тем не менее В.К. Ощепков пишет: «Калории есть калории, независимо от того, при какой температуре они измерены» и далее, чтобы не оставить никаких сомнений в смысле этого утверждения: «В природе нет и не может быть энергии более ценной и менее ценной — энергия всегда есть энергия» [3.1].
Естественно, что никаких научных доказательств этого, мягко говоря, странного тезиса не приводится. Игнорируется не только все, что сделано в термодинамике за последние 150 лет, прошедшие со времен Карно, но и все, что мы наблюдаем в природе и используем в технике.
Аналогично тому, как это делается для потока теплоты, можно определить и эксергию любого вида внутренней энергии, связанной с каким-либо телом. В определении эксергии в зависимости от того, с какой энергией мы имеем дело, могут участвовать не только температура, но и другие величины, например давление.
Если мы располагаем, например, баллоном, содержащим под определенным давлением р 1 = 10 МПа, то в земной атмосфере с давлением р 2 = 0,1 МПа он будет иметь работоспособность, которую можно реализовать, заставив его, скажем, вращать турбину, в которой газ расширится до 0,1 МПа.
Но если поместить такой баллон, например, в венерианскую атмосферу при р 2 = 10 МПа, или в глубину моря, где такое же давление, то работоспособность (эксергия газа) в нем будет равна нулю (давления р 1 и р 2 равны — газ в баллоне энергетически «мертв»).
Работоспособность — эксергия вещества — энергоносителя может определяться не только различием с окружающей средой в температуре и давлении. Не менее важна и разница в химическом составе. Если она есть, — существует и эксергия, которая может быть превращена в работу или другую безэнтропийную энергию с помощью соответствующего устройства. Это можно пояснить тоже «космическим» примером. Природный газ (в основном метан) имеет высокую работоспособность в среде воздуха или еще большую в среде кислорода. Но если поместить его в метановую атмосферу (где-нибудь на Юпитере), его работоспособность исчезнет — эксергия станет равной нулю. Напротив, воздух в этих же условиях будет прекрасным «топливом» с большой работоспособностью.
Нетрудно видеть, что все приведенные примеры аналогичны тем, которые приводились ранее (рис. 3.6) при разборе понятия энтропии. Эксергия (возможность получить работу) имеется, если существуют разности потенциалов интенсивных величин — температур, давлений или химических составов. Если их нет — система энергетически мертва — энтропия имеет максимальное значение.
Разница между последними примерами и показанными на рис. 3.6 состоит в том, что роль одной из половин сосуда играет окружающая среда, что в большей мере соответствует реальным техническим задачам.
Оценка энергетических ресурсов с помощью эксергии широко используется и в теории — во многих разделах термодинамики и в инженерной практике. Эксергия служит общей, единой мерой любых видов энергии (потока теплоты, вещества, излучения), определяя точной количественной мерой ее качество. Она дает возможность сформулировать второй закон термодинамики в менее общей, но зато более практически удобной форме, чем энтропия. Эта формулировка гласит: В любых реальных процессах, протекающих в условиях взаимодействия с равновесной окружающей средой, эксергия либо остается неизменной (в идеальных процессах), либо уменьшается (в реальных). Это означает, что любой процесс, в котором общая эксергия на выходе Е ʺ равна или меньше входящей E’ возможен; напротив, если Еʺ > E’, то невозможен и представляет собой некий вариант ppm-2.
Если отнести Еʺ к E’ то получим так называемый эксергетический КПД η e= Еʺ/E’. Очевидно, что η eв идеальном случае равен единице, т.е. 100%, а в реальном ηe < 100%. Если же ηe получается больше 100%, то мы неизбежно имеем дело с каким-либо вариантом ppm-2. Здесь просматривается четкая связь с фундаментальным энтропийным определением второго закона. Первый случай — идеальный процесс соответствует постоянству энтропии, второй — ее росту. Но пользоваться эксергетическим критерием более удобно: он непосредственно включает энергетические величины и в этом отношении аналогичен первому закону термодинамики. (Напомним, что непременное условие выполнения первого закона — равенство энергий: ∑W’ = ∑Wʺ; для второго закона ∑Eʺ ≤ ∑Е’.)
Читать дальше