Если вызвать колебания сгустка в одной точке, взаимодействия распространятся быстрее скорости света, проникающего сквозь сгусток, что противоречит специальной теории относительности и создает всевозможные временные парадоксы. Таким образом, «нелокальные теории поля», основанные на идее сгустков, считались непосильной задачей. Многие физики утверждали, что лишь локальная теория поля, построеннная на концепции точечных частиц, может быть последовательной. А нелокальные теории поля неизбежно противоречат теории относительности.
Второй довод выглядел еще убедительнее. Модель Венециано обладала множеством чудесных свойств (в том числе так называемой дуальностью), прежде никогда не виданных в теории поля. Несколькими годами ранее Ричард Фейнман изложил «правила», которым должна подчиняться любая теория поля. Однако правила Фейнмана представляли собой прямое нарушение принципа дуальности. В итоге многие специалисты по теории струн пришли к убеждению, что струнная теория поля невозможна по той причине, что она неизбежно нарушает свойства модели Венециано. Они утверждали, что теория струн занимает особое положение в физике, поскольку ее нельзя преобразовать в теорию поля.
Над этой сложной, но важной задачей я работал вместе с Кейдзи Киккава. Шаг за шагом мы разрабатывали свою теорию поля, точно так же, как наши предшественники строили теории поля для других взаимодействий. По примеру Фарадея мы вводили поле в каждой точке пространства-времени. Но для струнной теории поля нам пришлось обобщать концепцию Фарадея и принять поле, определенное для всех возможных конфигураций струны, колеблющейся в пространстве-времени.
На втором этапе требовалось составить уравнения поля, которым подчиняется струна. С уравнением поля для одной струны, перемещающейся в пространстве-времени, проблем не было. Как и следовало ожидать, наши уравнения поля дали бесконечный ряд струнных резонансов, каждый соответствовал некой субатомной частице. Затем мы обнаружили, что на возражения Юкавы и Гейзенберга можно было ответить с помощью струнной теории поля. Когда мы вызывали колебания струны, они распространялись по струне со скоростью меньшей, чем скорость света.
Но скоро мы зашли в тупик. При попытке ввести взаимодействующие струны мы не могли корректно воспроизвести амплитуду Венециано. Дуальность и счет кривых, приведенный Фейнманом для любой теории поля, находились в состоянии прямого конфликта. Как и полагали критики, некорректными оказались диаграммы Фейнмана. Этот результат обескураживал. Все говорило о том, что теория поля, последний век служившая фундаментом для физики, принципиально несовместима с теорией струн.
Помню, как я, разочарованный, до поздней ночи ломал голову над этой задачей. Несколько часов подряд я методично проверял возможные альтернативные решения. И неизменно приходил к выводу, что они противоречат дуальности. Тогда я вспомнил слова Шерлока Холмса, обращенные к Ватсону в повести Артура Конан Дойля «Знак четырех»: «Сколько раз я говорил вам: если отбросить невозможное, то, что останется, пусть даже самое невероятное , и будет истиной». Ободренный этой мыслью, я отбросил все невозможные альтернативы. Оставалось одно невероятное решение: игнорировать свойства формулы Венециано-Судзуки. Часа в три ночи меня вдруг осенило. Я понял, что физики упустили из виду очевидное решение: формулу Венециано-Судзуки можно разделить на две части. Тогда каждая часть соответствует одной из диаграмм Фейнмана, каждая часть опровергает дуальность, но итог соответствует свойствам теории поля.
Я поспешно взял бумагу и погрузился в расчеты. Следующие пять часов я провел проверяя и перепроверяя вычисления по всем возможным направлениям. Вывод оказался однозначным: теория поля действительно опровергает дуальность, как и следовало ожидать, тем не менее она приемлема, так как в конечном итоге воспроизводит формулу Венециано-Судзуки.
Задача была почти решена. Оставалась лишь одна диаграмма Фейнмана, соответствующая столкновению четырех струн. В том году я читал вводный курс электричества и магнетизма студентам Городского университета Нью-Йорка, и мы с ними изучали силовые линии Фарадея. Я предлагал студентам нарисовать силовые линии вокруг зарядов различной конфигурации, повторяя действия, которые первым проделал Фарадей в XIX в. Внезапно до меня дошло: волнистые линии, которые я просил нарисовать студентов, имеют ту же топологическую структуру, что и столкновение струн. Таким образом, рассматривая заряды в студенческой лаборатории, я нашел точную конфигурацию для столкновения четырех струн.
Читать дальше
Конец ознакомительного отрывка
Купить книгу